import logging import math import os from functools import partial from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from einops import rearrange from torch import Tensor, nn from torch.nn.init import trunc_normal_ unbind = None memory_efficient_attention = None scaled_index_add = None fmha = None index_select_cat = None logger = logging.getLogger("dinov2") class SoftConWrapper(nn.Module): def __init__( self, weights_path: Path, size, modality, do_pool=True, temporal_pooling: str = "mean", ): super().__init__() assert modality in ["optical", "SAR"] if (size == "small") and (modality == "optical"): self.encoder = vit_small( img_size=224, patch_size=14, in_chans=13, block_chunks=0, init_values=1e-5, num_register_tokens=0, ) checkpoint = torch.load(weights_path / "B13_vits14_softcon.pth", map_location="cpu") self.dim = 384 elif (size == "base") and (modality == "optical"): self.encoder = vit_base( img_size=224, patch_size=14, in_chans=13, block_chunks=0, init_values=1e-5, num_register_tokens=0, ) checkpoint = torch.load(weights_path / "B13_vitb14_softcon.pth", map_location="cpu") self.dim = 768 elif (size == "small") and (modality == "SAR"): self.encoder = vit_small( img_size=224, patch_size=14, in_chans=2, block_chunks=0, init_values=1e-5, num_register_tokens=0, ) checkpoint = torch.load(weights_path / "B2_vits14_softcon.pth", map_location="cpu") self.dim = 384 elif (size == "base") and (modality == "SAR"): self.encoder = vit_base( img_size=224, patch_size=14, in_chans=2, block_chunks=0, init_values=1e-5, num_register_tokens=0, ) checkpoint = torch.load(weights_path / "B2_vitb14_softcon.pth", map_location="cpu") self.dim = 768 else: raise ValueError(f"size should be small or base, not {size}") self.encoder.load_state_dict(checkpoint) self.image_resolution = 224 self.do_pool = do_pool self.patch_size = 14 self.grid_size = int(self.image_resolution / self.patch_size) if temporal_pooling not in ["mean", "max"]: raise ValueError( f"Expected temporal_pooling to be in ['mean', 'max'], got {temporal_pooling}" ) self.temporal_pooling = temporal_pooling def resize(self, images): images = F.interpolate( images, size=(self.image_resolution, self.image_resolution), mode="bilinear", align_corners=False, ) return images def preproccess(self, images): if len(images.shape) == 5: # take the mean along the temporal dimension images = torch.mean(images, dim=2) images = rearrange(images, "b h w c -> b c h w") assert images.shape[1] == 13 return self.resize(images) # (bsz, 13, 224, 224) def forward(self, s2=None, s1=None, months=None): if s2 is None: raise ValueError("S2 can't be None for SoftCon") # TODO include S1 support too. if len(s2.shape) == 5: outputs_l: List[torch.Tensor] = [] for timestep in range(s2.shape[3]): image = self.preproccess(s2[:, :, :, timestep]) output = self.encoder.forward_features(image)["x_norm_patchtokens"] # output shape for atto: (bsz, 320, 7, 7) # output shape for tiny: (bsz, 768, 6, 6) if self.do_pool: output = output.mean(dim=1) outputs_l.append(output) outputs_t = torch.stack(outputs_l, dim=-1) # b h w d t if self.temporal_pooling == "mean": return outputs_t.mean(dim=-1) else: return torch.amax(outputs_t, dim=-1) else: s2 = self.preproccess(s2) output = self.encoder.forward_features(s2)["x_norm_patchtokens"] if self.do_pool: output = output.mean(dim=1) return output XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None XFORMERS_AVAILABLE = False class SwiGLUFFN(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Optional[Callable[..., nn.Module]] = None, drop: float = 0.0, bias: bool = True, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) self.w3 = nn.Linear(hidden_features, out_features, bias=bias) def forward(self, x: Tensor) -> Tensor: x12 = self.w12(x) x1, x2 = x12.chunk(2, dim=-1) hidden = F.silu(x1) * x2 return self.w3(hidden) class SwiGLUFFNFused(SwiGLUFFN): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Optional[Callable[..., nn.Module]] = None, drop: float = 0.0, bias: bool = True, ) -> None: out_features = out_features or in_features hidden_features = hidden_features or in_features hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 super().__init__( in_features=in_features, hidden_features=hidden_features, out_features=out_features, bias=bias, ) def make_2tuple(x): if isinstance(x, tuple): assert len(x) == 2 return x assert isinstance(x, int) return (x, x) class PatchEmbed(nn.Module): """ 2D image to patch embedding: (B,C,H,W) -> (B,N,D) Args: img_size: Image size. patch_size: Patch token size. in_chans: Number of input image channels. embed_dim: Number of linear projection output channels. norm_layer: Normalization layer. """ def __init__( self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, embed_dim: int = 768, norm_layer: Optional[Callable] = None, flatten_embedding: bool = True, ) -> None: super().__init__() image_HW = make_2tuple(img_size) patch_HW = make_2tuple(patch_size) patch_grid_size = ( image_HW[0] // patch_HW[0], image_HW[1] // patch_HW[1], ) self.img_size = image_HW self.patch_size = patch_HW self.patches_resolution = patch_grid_size self.num_patches = patch_grid_size[0] * patch_grid_size[1] self.in_chans = in_chans self.embed_dim = embed_dim self.flatten_embedding = flatten_embedding self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x: Tensor) -> Tensor: _, _, H, W = x.shape patch_H, patch_W = self.patch_size assert ( H % patch_H == 0 ), f"Input image height {H} is not a multiple of patch height {patch_H}" assert ( W % patch_W == 0 ), f"Input image width {W} is not a multiple of patch width: {patch_W}" x = self.proj(x) # B C H W H, W = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) # B HW C x = self.norm(x) if not self.flatten_embedding: x = x.reshape(-1, H, W, self.embed_dim) # B H W C return x def flops(self) -> float: Ho, Wo = self.patches_resolution flops = ( Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) ) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class LayerScale(nn.Module): def __init__( self, dim: int, init_values: Union[float, Tensor] = 1e-5, inplace: bool = False, ) -> None: super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x: Tensor) -> Tensor: return x.mul_(self.gamma) if self.inplace else x * self.gamma def drop_path(x, drop_prob: float = 0.0, training: bool = False): if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0: random_tensor.div_(keep_prob) output = x * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: Tensor) -> Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttention(Attention): def forward(self, x: Tensor, attn_bias=None) -> Tensor: if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(x) else: assert unbind is not None assert memory_efficient_attention is not None B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class Mlp(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = nn.GELU, drop: float = 0.0, bias: bool = True, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) self.drop = nn.Dropout(drop) def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Block(nn.Module): def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = False, proj_bias: bool = True, ffn_bias: bool = True, drop: float = 0.0, attn_drop: float = 0.0, init_values=None, drop_path: float = 0.0, act_layer: Callable[..., nn.Module] = nn.GELU, norm_layer: Callable[..., nn.Module] = nn.LayerNorm, attn_class: Callable[..., nn.Module] = Attention, ffn_layer: Callable[..., nn.Module] = Mlp, ) -> None: super().__init__() # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}") self.norm1 = norm_layer(dim) self.attn = attn_class( dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, ) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = ffn_layer( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, bias=ffn_bias, ) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.sample_drop_ratio = drop_path def forward(self, x: Tensor) -> Tensor: def attn_residual_func(x: Tensor) -> Tensor: return self.ls1(self.attn(self.norm1(x))) def ffn_residual_func(x: Tensor) -> Tensor: return self.ls2(self.mlp(self.norm2(x))) if self.training and self.sample_drop_ratio > 0.1: # the overhead is compensated only for a drop path rate larger than 0.1 x = drop_add_residual_stochastic_depth( x, residual_func=attn_residual_func, sample_drop_ratio=self.sample_drop_ratio, ) x = drop_add_residual_stochastic_depth( x, residual_func=ffn_residual_func, sample_drop_ratio=self.sample_drop_ratio, ) elif self.training and self.sample_drop_ratio > 0.0: x = x + self.drop_path1(attn_residual_func(x)) x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 else: x = x + attn_residual_func(x) x = x + ffn_residual_func(x) return x def drop_add_residual_stochastic_depth( x: Tensor, residual_func: Callable[[Tensor], Tensor], sample_drop_ratio: float = 0.0, ) -> Tensor: # 1) extract subset using permutation b, n, d = x.shape sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) brange = (torch.randperm(b, device=x.device))[:sample_subset_size] x_subset = x[brange] # 2) apply residual_func to get residual residual = residual_func(x_subset) x_flat = x.flatten(1) residual = residual.flatten(1) residual_scale_factor = b / sample_subset_size # 3) add the residual x_plus_residual = torch.index_add( x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor ) return x_plus_residual.view_as(x) def get_branges_scales(x, sample_drop_ratio=0.0): b, n, d = x.shape sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) brange = (torch.randperm(b, device=x.device))[:sample_subset_size] residual_scale_factor = b / sample_subset_size return brange, residual_scale_factor def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None): if scaling_vector is None: x_flat = x.flatten(1) residual = residual.flatten(1) x_plus_residual = torch.index_add( x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor ) else: x_plus_residual = scaled_index_add( x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor, ) return x_plus_residual attn_bias_cache: Dict[Tuple, Any] = {} def get_attn_bias_and_cat(x_list, branges=None): """ this will perform the index select, cat the tensors, and provide the attn_bias from cache """ batch_sizes = ( [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list] ) all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) if all_shapes not in attn_bias_cache.keys(): seqlens = [] for b, x in zip(batch_sizes, x_list): for _ in range(b): seqlens.append(x.shape[1]) attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) attn_bias._batch_sizes = batch_sizes attn_bias_cache[all_shapes] = attn_bias if branges is not None: cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view( 1, -1, x_list[0].shape[-1] ) else: tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) cat_tensors = torch.cat(tensors_bs1, dim=1) return attn_bias_cache[all_shapes], cat_tensors def drop_add_residual_stochastic_depth_list( x_list: List[Tensor], residual_func: Callable[[Tensor, Any], Tensor], sample_drop_ratio: float = 0.0, scaling_vector=None, ) -> List: # 1) generate random set of indices for dropping samples in the batch branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list] branges = [s[0] for s in branges_scales] residual_scale_factors = [s[1] for s in branges_scales] # 2) get attention bias and index+concat the tensors attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges) # 3) apply residual_func to get residual, and split the result residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore outputs = [] for x, brange, residual, residual_scale_factor in zip( x_list, branges, residual_list, residual_scale_factors ): outputs.append( add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x) ) return outputs class NestedTensorBlock(Block): def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]: """ x_list contains a list of tensors to nest together and run """ assert isinstance(self.attn, MemEffAttention) if self.training and self.sample_drop_ratio > 0.0: def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.attn(self.norm1(x), attn_bias=attn_bias) def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.mlp(self.norm2(x)) x_list = drop_add_residual_stochastic_depth_list( x_list, residual_func=attn_residual_func, sample_drop_ratio=self.sample_drop_ratio, scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None, ) x_list = drop_add_residual_stochastic_depth_list( x_list, residual_func=ffn_residual_func, sample_drop_ratio=self.sample_drop_ratio, scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None, ) return x_list else: def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.ls2(self.mlp(self.norm2(x))) attn_bias, x = get_attn_bias_and_cat(x_list) x = x + attn_residual_func(x, attn_bias=attn_bias) x = x + ffn_residual_func(x) return attn_bias.split(x) def forward(self, x_or_x_list): if isinstance(x_or_x_list, Tensor): return super().forward(x_or_x_list) elif isinstance(x_or_x_list, list): if not XFORMERS_AVAILABLE: raise AssertionError("xFormers is required for using nested tensors") return self.forward_nested(x_or_x_list) else: raise AssertionError def named_apply( fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False ) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = ".".join((name, child_name)) if name else child_name named_apply( fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True ) if depth_first and include_root: fn(module=module, name=name) return module class BlockChunk(nn.ModuleList): def forward(self, x): for b in self: x = b(x) return x class DinoVisionTransformer(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, ffn_bias=True, proj_bias=True, drop_path_rate=0.0, drop_path_uniform=False, init_values=None, # for layerscale: None or 0 => no layerscale embed_layer=PatchEmbed, act_layer=nn.GELU, block_fn=Block, ffn_layer="mlp", block_chunks=1, num_register_tokens=0, interpolate_antialias=False, interpolate_offset=0.1, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap num_register_tokens: (int) number of extra cls tokens (so-called "registers") interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings """ super().__init__() norm_layer = partial(nn.LayerNorm, eps=1e-6) self.num_features = ( self.embed_dim ) = embed_dim # num_features for consistency with other models self.num_tokens = 1 self.n_blocks = depth self.num_heads = num_heads self.patch_size = patch_size self.num_register_tokens = num_register_tokens self.interpolate_antialias = interpolate_antialias self.interpolate_offset = interpolate_offset self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) assert num_register_tokens >= 0 self.register_tokens = ( nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None ) if drop_path_uniform is True: dpr = [drop_path_rate] * depth else: dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule if ffn_layer == "mlp": logger.info("using MLP layer as FFN") ffn_layer = Mlp elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": logger.info("using SwiGLU layer as FFN") ffn_layer = SwiGLUFFNFused elif ffn_layer == "identity": logger.info("using Identity layer as FFN") def f(*args, **kwargs): return nn.Identity() ffn_layer = f else: raise NotImplementedError blocks_list = [ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, ffn_bias=ffn_bias, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, ffn_layer=ffn_layer, init_values=init_values, ) for i in range(depth) ] if block_chunks > 0: self.chunked_blocks = True chunked_blocks = [] chunksize = depth // block_chunks for i in range(0, depth, chunksize): # this is to keep the block index consistent if we chunk the block list chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) else: self.chunked_blocks = False self.blocks = nn.ModuleList(blocks_list) self.norm = norm_layer(embed_dim) self.head = nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) self.init_weights() def init_weights(self): trunc_normal_(self.pos_embed, std=0.02) nn.init.normal_(self.cls_token, std=1e-6) if self.register_tokens is not None: nn.init.normal_(self.register_tokens, std=1e-6) named_apply(init_weights_vit_timm, self) def interpolate_pos_encoding(self, x, w, h): previous_dtype = x.dtype npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed pos_embed = self.pos_embed.float() class_pos_embed = pos_embed[:, 0] patch_pos_embed = pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_size h0 = h // self.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset sqrt_N = math.sqrt(N) sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2), scale_factor=(sx, sy), mode="bicubic", antialias=self.interpolate_antialias, ) assert int(w0) == patch_pos_embed.shape[-2] assert int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) def prepare_tokens_with_masks(self, x, masks=None): B, nc, w, h = x.shape x = self.patch_embed(x) if masks is not None: x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + self.interpolate_pos_encoding(x, w, h) if self.register_tokens is not None: x = torch.cat( ( x[:, :1], self.register_tokens.expand(x.shape[0], -1, -1), x[:, 1:], ), dim=1, ) return x def forward_features_list(self, x_list, masks_list): x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] for blk in self.blocks: x = blk(x) all_x = x output = [] for x, masks in zip(all_x, masks_list): x_norm = self.norm(x) output.append( { "x_norm_clstoken": x_norm[:, 0], "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], "x_prenorm": x, "masks": masks, } ) return output def forward_features(self, x, masks=None): if isinstance(x, list): return self.forward_features_list(x, masks) x = self.prepare_tokens_with_masks(x, masks) for blk in self.blocks: x = blk(x) x_norm = self.norm(x) return { "x_norm_clstoken": x_norm[:, 0], "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], "x_prenorm": x, "masks": masks, } def _get_intermediate_layers_not_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) # If n is an int, take the n last blocks. If it's a list, take them output, total_block_len = [], len(self.blocks) blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n for i, blk in enumerate(self.blocks): x = blk(x) if i in blocks_to_take: output.append(x) assert len(output) == len( blocks_to_take ), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def _get_intermediate_layers_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) output, i, total_block_len = [], 0, len(self.blocks[-1]) # If n is an int, take the n last blocks. If it's a list, take them blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n for block_chunk in self.blocks: for blk in block_chunk[i:]: # Passing the nn.Identity() x = blk(x) if i in blocks_to_take: output.append(x) i += 1 assert len(output) == len( blocks_to_take ), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def get_intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, # Layers or n last layers to take reshape: bool = False, return_class_token: bool = False, norm=True, ): if self.chunked_blocks: outputs = self._get_intermediate_layers_chunked(x, n) else: outputs = self._get_intermediate_layers_not_chunked(x, n) if norm: outputs = [self.norm(out) for out in outputs] class_tokens = [out[:, 0] for out in outputs] outputs = [out[:, 1:] for out in outputs] if reshape: B, _, w, h = x.shape outputs = [ out.reshape(B, w // self.patch_size, h // self.patch_size, -1) .permute(0, 3, 1, 2) .contiguous() for out in outputs ] if return_class_token: return tuple(zip(outputs, class_tokens)) return tuple(outputs) def forward(self, *args, is_training=False, **kwargs): ret = self.forward_features(*args, **kwargs) if is_training: return ret else: return self.head(ret["x_norm_clstoken"]) def init_weights_vit_timm(module: nn.Module, name: str = ""): """ViT weight initialization, original timm impl (for reproducibility)""" if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) def vit_small(patch_size=16, num_register_tokens=0, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model def vit_base(patch_size=16, num_register_tokens=0, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model def vit_large(patch_size=16, num_register_tokens=0, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): """ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 """ model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1536, depth=40, num_heads=24, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model