Spaces:
Sleeping
Sleeping
from functools import partial | |
from pathlib import Path | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.nn.init as init | |
from einops import rearrange | |
from timm.models.vision_transformer import Block | |
class DOFAWrapper(nn.Module): | |
def __init__( | |
self, weights_path: Path, size="base", do_pool=True, temporal_pooling: str = "mean" | |
): | |
super().__init__() | |
if size == "base": | |
self.encoder = vit_base_patch16() | |
checkpoint = torch.load(weights_path / "DOFA_ViT_base_e100.pth", map_location="cpu") | |
self.dim = 768 | |
elif size == "large": | |
self.encoder = vit_large_patch16() | |
checkpoint = torch.load(weights_path / "DOFA_ViT_large_e100.pth", map_location="cpu") | |
self.dim = 1024 | |
else: | |
raise ValueError(f"size must be base or large, not {size}") | |
self.encoder.load_state_dict(checkpoint, strict=False) | |
self.image_resolution = 224 | |
self.patch_size = 16 | |
self.grid_size = int(self.image_resolution / self.patch_size) | |
# Sentinel-2 wavelengths, with RGB re-ordered | |
self.s2_waves = [0.665, 0.56, 0.49, 0.705, 0.74, 0.783, 0.842, 1.61, 2.19] | |
self.s1_waves = [3.75, 3.75] | |
self.do_pool = do_pool | |
if temporal_pooling not in ["mean", "max"]: | |
raise ValueError( | |
f"Expected temporal_pooling to be in ['mean', 'max'], got {temporal_pooling}" | |
) | |
self.temporal_pooling = temporal_pooling | |
def resize(self, images): | |
images = F.interpolate( | |
images, | |
size=(self.image_resolution, self.image_resolution), | |
mode="bilinear", | |
align_corners=False, | |
) | |
return images | |
def preproccess(self, images): | |
if len(images.shape) == 5: | |
# take the mean along the temporal dimension | |
images = torch.mean(images, dim=2) | |
images = rearrange(images, "b h w c -> b c h w") | |
assert images.shape[1] in (13, 2) | |
# need to re-order RGB and remove coastal aerosol, water vapour, narrow NIR, and cirrus | |
if images.shape[1] == 13: | |
channel_ids = [3, 2, 1, 4, 5, 6, 7, 11, 12] | |
images = images[:, channel_ids, :, :] | |
return self.resize(images) # (bsz, C, H, W) | |
def forward(self, s2=None, s1=None, months=None): | |
# TODO add support for s1 with s1 waves | |
if s2 is not None: | |
if len(s2.shape) == 5: | |
outputs_l: List[torch.Tensor] = [] | |
for timestep in range(s2.shape[3]): | |
image = self.preproccess(s2[:, :, :, timestep]) | |
output = self.encoder.forward_features(image, wave_list=self.s2_waves) | |
if self.do_pool: | |
output = output.mean(dim=1) | |
else: | |
output = output[:, 1:] | |
outputs_l.append(output) | |
outputs_t = torch.stack(outputs_l, dim=-1) # b h w d t | |
if self.temporal_pooling == "mean": | |
return outputs_t.mean(dim=-1) | |
else: | |
return torch.amax(outputs_t, dim=-1) | |
else: | |
s2 = self.preproccess(s2) | |
output = self.encoder.forward_features(s2, wave_list=self.s2_waves) | |
if self.do_pool: | |
return output.mean(dim=1) | |
else: | |
return output[:, 1:] | |
elif s1 is not None: | |
if len(s1.shape) == 5: | |
outputs_l: List[torch.Tensor] = [] | |
for timestep in range(s1.shape[3]): | |
image = self.preproccess(s1[:, :, :, timestep]) | |
output = self.encoder.forward_features(image, wave_list=self.s1_waves) | |
if self.do_pool: | |
output = output.mean(dim=1) | |
else: | |
output = output[:, 1:] | |
outputs_l.append(output) | |
outputs_t = torch.stack(outputs_l, dim=-1) # b h w d t | |
if self.temporal_pooling == "mean": | |
return outputs_t.mean(dim=-1) | |
else: | |
return torch.amax(outputs_t, dim=-1) | |
else: | |
s1 = self.preproccess(s1) | |
output = self.encoder.forward_features(s1, wave_list=self.s1_waves) | |
if self.do_pool: | |
return output.mean(dim=1) | |
else: | |
return output[:, 1:] | |
def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = torch.arange(embed_dim // 2, dtype=torch.float32, device=pos.device) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = torch.sin(out) # (M, D/2) | |
emb_cos = torch.cos(out) # (M, D/2) | |
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) | |
return emb | |
class TransformerWeightGenerator(nn.Module): | |
def __init__(self, input_dim, output_dim, embed_dim, num_heads=4, num_layers=1): | |
super(TransformerWeightGenerator, self).__init__() | |
encoder_layer = nn.TransformerEncoderLayer( | |
d_model=input_dim, | |
nhead=num_heads, | |
activation="gelu", | |
norm_first=False, | |
batch_first=False, | |
dropout=False, | |
) | |
self.transformer_encoder = nn.TransformerEncoder( | |
encoder_layer, num_layers=num_layers, enable_nested_tensor=False | |
) | |
# Linear layer to map transformer output to desired weight shape | |
self.fc_weight = nn.Linear(input_dim, output_dim) | |
self.fc_bias = nn.Linear(input_dim, embed_dim) | |
self.wt_num = 128 | |
self.weight_tokens = nn.Parameter(torch.empty([self.wt_num, input_dim])) | |
self.bias_token = nn.Parameter(torch.empty([1, input_dim])) | |
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is | |
# too big (2.) | |
torch.nn.init.normal_(self.weight_tokens, std=0.02) | |
torch.nn.init.normal_(self.bias_token, std=0.02) | |
def forward(self, x): | |
# x should have shape [seq_len, batch, input_dim] | |
pos_wave = x | |
x = torch.cat([self.weight_tokens, pos_wave], dim=0) | |
x = torch.cat([x, self.bias_token], dim=0) | |
transformer_output = self.transformer_encoder(x) | |
weights = self.fc_weight(transformer_output[self.wt_num : -1] + pos_wave) | |
bias = self.fc_bias(transformer_output[-1]) # Using the last output to generate bias | |
return weights, bias | |
class Basic1d(nn.Module): | |
def __init__(self, in_channels, out_channels, bias=True): | |
super().__init__() | |
conv = nn.Linear(in_channels, out_channels, bias) | |
self.conv = nn.Sequential( | |
conv, | |
) | |
if not bias: | |
self.conv.add_module("ln", nn.LayerNorm(out_channels)) | |
self.conv.add_module("relu", nn.ReLU(inplace=True)) | |
def forward(self, x): | |
out = self.conv(x) | |
return out | |
class FCResLayer(nn.Module): | |
def __init__(self, linear_size=128): | |
super(FCResLayer, self).__init__() | |
self.l_size = linear_size | |
self.nonlin1 = nn.ReLU(inplace=True) | |
self.nonlin2 = nn.ReLU(inplace=True) | |
self.w1 = nn.Linear(self.l_size, self.l_size) | |
self.w2 = nn.Linear(self.l_size, self.l_size) | |
def forward(self, x): | |
y = self.w1(x) | |
y = self.nonlin1(y) | |
y = self.w2(y) | |
y = self.nonlin2(y) | |
out = x + y | |
return out | |
class Dynamic_MLP_OFA(nn.Module): | |
""" | |
Input: channels of wavelength (normalized): List -> List | |
kernel size of the depth-wise convolution: kernel_size, default 3x3 | |
wv_planes | |
inplanes | |
""" | |
def __init__(self, wv_planes, inter_dim=128, kernel_size=3, embed_dim=1024): | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.wv_planes = wv_planes | |
self.embed_dim = embed_dim | |
self.kernel_size = kernel_size | |
self._num_kernel = self.kernel_size * self.kernel_size * self.embed_dim | |
self.inter_dim = inter_dim | |
self.patch_size = (kernel_size, kernel_size) | |
self.num_patches = -1 | |
self.weight_generator = TransformerWeightGenerator(wv_planes, self._num_kernel, embed_dim) | |
self.scaler = 0.01 | |
self.fclayer = FCResLayer(wv_planes) | |
self._init_weights() | |
def _get_weights(self, waves): | |
dynamic_weights = self.weight_generator(waves) | |
return dynamic_weights | |
def weight_init(self, m): | |
if isinstance(m, nn.Linear): | |
init.xavier_uniform_(m.weight) | |
m.bias.data.fill_(0.01) | |
def _init_weights(self): | |
""" | |
initialize the base weights and dynamic mlp weights | |
""" | |
self.weight_generator.apply(self.weight_init) | |
self.fclayer.apply(self.weight_init) | |
def forward(self, img_feat, wvs): | |
inplanes = wvs.size(0) | |
# wv_feats: 9,128 -> 9, 3x3x3 | |
waves = get_1d_sincos_pos_embed_from_grid_torch(self.wv_planes, wvs * 1000) | |
waves = self.fclayer(waves) | |
weight, bias = self._get_weights(waves) # 3x3x3 | |
dynamic_weight = weight.view( | |
self.embed_dim, inplanes, self.kernel_size, self.kernel_size | |
) # 3xoutdx16x16 | |
if bias is not None: | |
bias = bias.view([self.embed_dim]) * self.scaler | |
weights = dynamic_weight * self.scaler | |
dynamic_out = F.conv2d( | |
img_feat, weights, bias=bias, stride=self.kernel_size, padding=1, dilation=1 | |
) | |
x = dynamic_out | |
x = x.flatten(2).transpose(1, 2) | |
return x, waves | |
class OFAViT(nn.Module): | |
"""Masked Autoencoder with VisionTransformer backbone""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
drop_rate=0.0, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
wv_planes=128, | |
num_classes=45, | |
global_pool=True, | |
mlp_ratio=4.0, | |
norm_layer=nn.LayerNorm, | |
): | |
super().__init__() | |
self.wv_planes = wv_planes | |
self.global_pool = global_pool | |
if self.global_pool: | |
norm_layer = norm_layer | |
embed_dim = embed_dim | |
self.fc_norm = norm_layer(embed_dim) | |
else: | |
self.norm = norm_layer(embed_dim) | |
self.patch_embed = Dynamic_MLP_OFA( | |
wv_planes=128, inter_dim=128, kernel_size=16, embed_dim=embed_dim | |
) | |
self.num_patches = (img_size // patch_size) ** 2 | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, self.num_patches + 1, embed_dim), requires_grad=False | |
) # fixed sin-cos embedding | |
self.blocks = nn.ModuleList( | |
[ | |
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) | |
for i in range(depth) | |
] | |
) | |
self.head_drop = nn.Dropout(drop_rate) | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x, wave_list): | |
# embed patches | |
wavelist = torch.tensor(wave_list, device=x.device).float() | |
self.waves = wavelist | |
x, _ = self.patch_embed(x, self.waves) | |
x = x + self.pos_embed[:, 1:, :] | |
# append cls token | |
cls_token = self.cls_token + self.pos_embed[:, :1, :] | |
cls_tokens = cls_token.expand(x.shape[0], -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
# apply Transformer blocks | |
for block in self.blocks: | |
x = block(x) | |
return x | |
def forward_head(self, x, pre_logits=False): | |
x = self.head_drop(x) | |
return x if pre_logits else self.head(x) | |
def forward(self, x, wave_list): | |
x = self.forward_features(x, wave_list) | |
x = self.forward_head(x) | |
return x | |
def vit_small_patch16(**kwargs): | |
model = OFAViT( | |
patch_size=16, | |
embed_dim=384, | |
depth=12, | |
num_heads=6, | |
mlp_ratio=4, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
return model | |
def vit_base_patch16(**kwargs): | |
model = OFAViT( | |
patch_size=16, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
return model | |
def vit_large_patch16(**kwargs): | |
model = OFAViT( | |
patch_size=16, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
return model | |
def vit_huge_patch14(**kwargs): | |
model = OFAViT( | |
patch_size=14, | |
embed_dim=1280, | |
depth=32, | |
num_heads=16, | |
mlp_ratio=4, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
return model | |