File size: 20,727 Bytes
b20c769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import json
import tempfile
import unittest
from pathlib import Path

import torch
from einops import repeat

from single_file_galileo import Encoder as SingleFileEncoder
from src.data import (
    SPACE_BAND_GROUPS_IDX,
    SPACE_TIME_BANDS_GROUPS_IDX,
    STATIC_BAND_GROUPS_IDX,
    TIME_BAND_GROUPS_IDX,
    Dataset,
)
from src.data.config import CONFIG_FILENAME, ENCODER_FILENAME
from src.data.dataset import DatasetOutput
from src.galileo import Decoder, Encoder
from src.masking import (
    MASKING_MODES,
    MaskingFunctions,
    batch_mask_space,
    batch_mask_time,
    batch_subset_mask_galileo,
)
from src.utils import device, load_check_config

DATA_FOLDER = Path(__file__).parents[1] / "data"
TIFS_FOLDER = DATA_FOLDER / "tifs"
TEST_MODEL_FOLDER = Path(__file__).parents[0] / "141"


class TestGalileo(unittest.TestCase):
    @staticmethod
    def to_tensor_with_batch_d(input: DatasetOutput):
        return (
            torch.from_numpy(input.space_time_x).float().unsqueeze(0),
            torch.from_numpy(input.space_x).float().unsqueeze(0),
            torch.from_numpy(input.time_x).float().unsqueeze(0),
            torch.from_numpy(input.static_x).float().unsqueeze(0),
            torch.from_numpy(input.months).long().unsqueeze(0),
        )

    def test_end_to_end(self):
        self._end_to_end_run(16, 8)

    def test_end_to_end_different_inputs_per_dim_than_default(self):
        self._end_to_end_run(16, 4)

    def _end_to_end_run(self, embedding_size, patch_size):
        image_size = patch_size * 4
        num_timesteps = 3
        encoder = Encoder(embedding_size=embedding_size, num_heads=1)
        decoder = Decoder(
            encoder_embedding_size=embedding_size,
            decoder_embedding_size=embedding_size,
            num_heads=1,
        )
        ds = Dataset(TIFS_FOLDER, False)
        for i in range(len(ds)):
            s_t_x, sp_x, t_x, st_x, months = self.to_tensor_with_batch_d(ds[i])
            masked_output = batch_subset_mask_galileo(
                s_t_x,
                sp_x,
                t_x,
                st_x,
                months,
                encode_ratio=0.25,
                decode_ratio=0.25,
                patch_size=patch_size,
                image_size=image_size,
                num_timesteps=num_timesteps,
                augmentation_strategies=None,
                masking_probabilities=[1] * len(MASKING_MODES),
                masking_function=MaskingFunctions.SPACE,
                max_unmasking_channels=4,
            )

            # for now, we just make sure it all runs
            with torch.autocast(device_type=device.type, dtype=torch.float16):
                encoder_output = encoder(
                    masked_output.space_time_x,
                    masked_output.space_x,
                    masked_output.time_x,
                    masked_output.static_x,
                    masked_output.space_time_mask,
                    masked_output.space_mask,
                    masked_output.time_mask,
                    masked_output.static_mask,
                    masked_output.months.long(),
                    patch_size=patch_size,
                )
                output = decoder(*encoder_output)

                with torch.no_grad():
                    t_s_t, t_sp, t_t, t_st, _, _, _, _ = encoder.apply_linear_projection(
                        masked_output.space_time_x,
                        masked_output.space_x,
                        masked_output.time_x,
                        masked_output.static_x,
                        ~(masked_output.space_time_mask == 2),  # we want 0s where the mask == 2
                        ~(masked_output.space_mask == 2),
                        ~(masked_output.time_mask == 2),
                        ~(masked_output.static_mask == 2),
                        patch_size,
                    )
                    t_s_t = encoder.blocks[0].norm1(t_s_t)
                    t_sp = encoder.blocks[0].norm1(t_sp)
                    t_sp = encoder.blocks[0].norm1(t_sp)
                    t_st = encoder.blocks[0].norm1(t_st)

            self.assertFalse(
                torch.isnan(
                    t_s_t[masked_output.space_time_mask[:, 0::patch_size, 0::patch_size] == 2]
                ).any()
            )
            self.assertFalse(
                torch.isnan(
                    t_sp[masked_output.space_mask[:, 0::patch_size, 0::patch_size] == 2]
                ).any()
            )
            self.assertFalse(torch.isnan(t_t[masked_output.time_mask == 2]).any())
            self.assertFalse(torch.isnan(t_st[masked_output.static_mask == 2]).any())
            self.assertTrue(
                list(encoder_output[0].shape)
                == [
                    1,
                    image_size / patch_size,
                    image_size / patch_size,
                    num_timesteps,
                    len(SPACE_TIME_BANDS_GROUPS_IDX),
                    embedding_size,
                ]
            )
            self.assertTrue(
                list(encoder_output[1].shape)
                == [
                    1,
                    image_size / patch_size,
                    image_size / patch_size,
                    len(SPACE_BAND_GROUPS_IDX),
                    embedding_size,
                ]
            )
            self.assertTrue(
                list(encoder_output[2].shape)
                == [
                    1,
                    num_timesteps,
                    len(TIME_BAND_GROUPS_IDX),
                    embedding_size,
                ]
            )
            self.assertTrue(
                list(encoder_output[3].shape)
                == [
                    1,
                    len(STATIC_BAND_GROUPS_IDX),
                    embedding_size,
                ]
            )
            self.assertFalse(
                torch.isnan(
                    encoder_output[0][
                        masked_output.space_time_mask[:, 0::patch_size, 0::patch_size] == 0
                    ]
                ).any()
            )
            self.assertFalse(
                torch.isnan(
                    encoder_output[1][
                        masked_output.space_mask[:, 0::patch_size, 0::patch_size] == 0
                    ]
                ).any()
            )
            self.assertFalse(torch.isnan(encoder_output[2][masked_output.time_mask == 0]).any())
            self.assertFalse(torch.isnan(encoder_output[3][masked_output.static_mask == 0]).any())

            self.assertTrue(
                list(output[0].shape)
                == [
                    1,
                    image_size / patch_size,
                    image_size / patch_size,
                    num_timesteps,
                    len(SPACE_TIME_BANDS_GROUPS_IDX),
                    embedding_size,
                ]
            )
            self.assertTrue(
                list(output[1].shape)
                == [
                    1,
                    image_size / patch_size,
                    image_size / patch_size,
                    len(SPACE_BAND_GROUPS_IDX),
                    embedding_size,
                ]
            )
            self.assertTrue(
                list(output[2].shape)
                == [1, num_timesteps, len(TIME_BAND_GROUPS_IDX), embedding_size]
            )
            self.assertTrue(
                list(output[3].shape) == [1, len(STATIC_BAND_GROUPS_IDX), embedding_size]
            )

            self.assertFalse(
                torch.isnan(
                    output[0][masked_output.space_time_mask[:, 0::patch_size, 0::patch_size] == 2]
                ).any()
            )
            self.assertFalse(
                torch.isnan(
                    output[1][masked_output.space_mask[:, 0::patch_size, 0::patch_size] == 2]
                ).any()
            )
            self.assertFalse(torch.isnan(output[2][masked_output.time_mask == 2]).any())
            self.assertFalse(torch.isnan(output[3][masked_output.static_mask == 2]).any())

            # check we can call backwards, with the loss
            summed_output = sum([torch.sum(o) for o in output])
            summed_output.backward()

    def test_decoder_add_masks(self):
        embedding_size = 16
        decoder = Decoder(
            encoder_embedding_size=embedding_size,
            decoder_embedding_size=embedding_size,
            num_heads=1,
        )
        b, h, w, t = 5, 6, 7, 8
        s_t_x = torch.ones(b, h, w, t, len(SPACE_TIME_BANDS_GROUPS_IDX), embedding_size)
        s_t_m = torch.zeros(b, h, w, t, len(SPACE_TIME_BANDS_GROUPS_IDX))
        s_t_m[:, :, :, 0] = 2  # the first timestep will get processed by the decoder
        s_t_m[:, :, :, 1] = 1  # the second timestep gets masked but not processed

        sp_x = torch.ones(b, h, w, len(SPACE_BAND_GROUPS_IDX), embedding_size)
        sp_m = torch.zeros(b, h, w, len(SPACE_BAND_GROUPS_IDX))
        sp_m[:, 0] = 2
        sp_m[:, 1] = 1

        t_x = torch.ones(b, t, len(TIME_BAND_GROUPS_IDX), embedding_size)
        t_m = torch.zeros(b, t, len(TIME_BAND_GROUPS_IDX))
        t_m[:, 0] = 2
        t_m[:, 1] = 1

        st_x = torch.ones(b, len(STATIC_BAND_GROUPS_IDX), embedding_size)
        st_m = torch.zeros(b, len(STATIC_BAND_GROUPS_IDX))
        st_m[:, 0] = 2
        st_m[:, 1] = 1

        with torch.no_grad():
            o = decoder.add_masks(s_t_x, sp_x, t_x, st_x, s_t_m, sp_m, t_m, st_m)

        self.assertTrue((o[0][:, :, :, 0] == 0).all())
        self.assertTrue((o[0][:, :, :, 1:] == 1).all())
        self.assertTrue((o[1][:, 0] == 0).all())
        self.assertTrue((o[1][:, 1:] == 1).all())
        self.assertTrue((o[2][:, 0] == 0).all())
        self.assertTrue((o[2][:, 1:] == 1).all())
        self.assertTrue((o[3][:, 0] == 0).all())
        self.assertTrue((o[3][:, 1:] == 1).all())

    def test_mean_of_tokens(self):
        b, t, d, h, w, s_t_c_g, sp_c_g, t_c_g, st_c_g = 1, 2, 8, 3, 3, 5, 6, 2, 4
        s_t_x = torch.ones((b, h, w, t, s_t_c_g, d))
        sp_x = torch.ones((b, h, w, sp_c_g, d))
        t_x = torch.ones((b, t, t_c_g, d))
        st_x = torch.ones((b, st_c_g, d))

        # the first timestep and the first column are masked
        s_t_m = torch.zeros((b, h, w, t, s_t_c_g))
        s_t_m[:, :, 0, :] = 1
        s_t_m[:, :, :, 0] = 1
        s_t_x[:, :, 0, :] = 0
        s_t_x[:, :, :, 0] = 0
        # the last row is masked
        sp_m = torch.zeros((b, h, w, sp_c_g))
        sp_m[:, -1, :] = 1
        sp_x[:, -1, :] = 0
        # the first timestep is masked
        t_m = torch.zeros((b, t, t_c_g))
        t_m[:, 0] = 1
        t_x[:, 0] = 0
        # the last column is masked
        st_m = torch.zeros((b, st_c_g))
        st_m[:, -1] = 1
        st_x[:, -1] = 0

        mean = Encoder.average_tokens(s_t_x, sp_x, t_x, st_x, s_t_m, sp_m, t_m, st_m)
        self.assertEqual(mean.shape, (b, d))
        self.assertTrue((mean == 1).all())

    def test_mask_and_unmask_tokens(self):
        b, d = 2, 2
        x = torch.tensor([[0, 1, 0], [1, 0, 1]]).float()
        x = repeat(x, "b n -> b n d", d=d)
        mask = torch.tensor([[1, 0, 1], [0, 1, 0]]).float()

        out_x, indices, updated_mask = Encoder.remove_masked_tokens(x, mask)
        self.assertEqual(out_x.dtype, x.dtype)
        self.assertEqual(updated_mask.dtype, mask.dtype)
        self.assertEqual(out_x.shape, (b, 2, d))
        # for the 2nd item in the batch, there should be only 0s
        self.assertTrue(torch.equal(out_x[1], torch.ones_like(out_x[1])))
        # for the first item in the batch, only the first index is unmasked so
        # it should be at the front
        self.assertEqual(indices[0, 0], 1)
        # for the second item, the 0th and 2nd are masked
        self.assertTrue(torch.equal(indices[1, :2], torch.tensor([0, 2])))
        self.assertEqual(updated_mask.shape, (b, 2))
        self.assertTrue(torch.equal(updated_mask, torch.Tensor([[0, 1], [0, 0]])))

        # check that when we add things back, they are once again what we had originally
        final_x, final_mask = Encoder.add_removed_tokens(out_x, indices, updated_mask)
        self.assertEqual(final_x.dtype, x.dtype)
        self.assertEqual(final_mask.dtype, mask.dtype)
        self.assertTrue(torch.equal(final_x, x))
        self.assertTrue(torch.equal(final_mask, mask))

    def test_combine_x_y(self):
        # x is the query (i.e. the masked tokens)
        x = torch.tensor([[14, 15, 16], [15, 16, 1]]).unsqueeze(-1)
        # y is the keys and values (i.e. the unmasked tokens)
        y = torch.tensor([[5, 6, 7, 8], [4, 5, 6, 7]]).unsqueeze(-1)
        x_mask = torch.tensor([[1, 1, 1], [1, 1, 0]])
        y_mask = torch.tensor([[1, 1, 1, 1], [0, 1, 1, 1]])
        indices = torch.tensor([[6, 7, 8, 4, 5, 0, 1, 2, 3], [7, 8, 3, 4, 5, 6, 0, 1, 2]])

        tokens = Decoder.combine_x_y(x, y, x_mask, y_mask, indices)
        self.assertTrue(
            torch.equal(
                tokens,
                torch.tensor(
                    [[5, 6, 7, 8, 0, 0, 14, 15, 16], [5, 6, 7, 0, 0, 0, 0, 15, 16]]
                ).unsqueeze(-1),
            )
        )

    def test_split_x_y(self):
        tokens = torch.tensor(
            [[5, 6, 7, 8, 2, 13, 14, 15, 16], [5, 6, 7, 1, 2, 3, 4, 15, 16]]
        ).unsqueeze(-1)
        mask = torch.tensor([[0, 0, 0, 0, 1, 1, 2, 2, 2], [0, 0, 0, 1, 1, 1, 1, 2, 2]])

        x, y, x_mask, y_mask, _ = Decoder.split_x_y(tokens, mask)
        self.assertTrue(torch.equal(x, torch.tensor([[14, 15, 16], [15, 16, 1]]).unsqueeze(-1)))
        self.assertTrue(torch.equal(y, torch.tensor([[5, 6, 7, 8], [4, 5, 6, 7]]).unsqueeze(-1)))
        self.assertTrue(torch.equal(x_mask, torch.tensor([[1, 1, 1], [1, 1, 0]])))
        self.assertTrue(torch.equal(y_mask, torch.tensor([[1, 1, 1, 1], [0, 1, 1, 1]])))

    def test_x_y_there_and_back_again(self):
        tokens = torch.tensor(
            [[5, 6, 7, 8, 2, 13, 14, 15, 16], [5, 6, 7, 1, 2, 3, 4, 15, 16]]
        ).unsqueeze(-1)
        mask = torch.tensor([[0, 0, 0, 0, 1, 1, 2, 2, 2], [0, 0, 0, 1, 1, 1, 1, 2, 2]])
        x, y, x_mask, y_mask, indices = Decoder.split_x_y(tokens, mask)
        new_tokens = Decoder.combine_x_y(x, y, x_mask, y_mask, indices)
        tokens[mask == 1] = 0
        self.assertTrue(torch.equal(tokens, new_tokens))

    def test_load_from_device(self):
        config = load_check_config("nano.json")
        original_encoder = Encoder(**config["model"]["encoder"])

        with tempfile.TemporaryDirectory() as tempdir:
            torch.save(original_encoder.state_dict(), Path(tempdir) / ENCODER_FILENAME)
            with (Path(tempdir) / CONFIG_FILENAME).open("w") as f:
                json.dump(config, f)

            new_encoder = Encoder.load_from_folder(Path(tempdir))

        for key, val in new_encoder.state_dict().items():
            self.assertTrue(torch.equal(val, original_encoder.state_dict()[key]))

    def test_decoder_and_mask_static(self):
        patch_size = 4
        ratio = 0.25

        ds = Dataset(TIFS_FOLDER, False)
        tensor_batch = self.to_tensor_with_batch_d(ds[0])
        self.assertTrue(tensor_batch[0].shape[1] == tensor_batch[0].shape[2])
        for f in [batch_mask_time, batch_mask_space]:
            masked_output = f(
                *tensor_batch,
                encode_ratio=ratio,
                decode_ratio=ratio,
                mode=[("space", "DW")],
                decoder_mode=[("static", "LS")],
                patch_size=patch_size,
            )

            encoder = Encoder(embedding_size=32, num_heads=1)
            decoder = Decoder(
                encoder_embedding_size=32,
                decoder_embedding_size=32,
                num_heads=1,
            )
            encoder_output = encoder(
                masked_output.space_time_x,
                masked_output.space_x,
                masked_output.time_x,
                masked_output.static_x,
                masked_output.space_time_mask,
                masked_output.space_mask,
                masked_output.time_mask,
                masked_output.static_mask,
                masked_output.months.long(),
                patch_size=patch_size,
            )
            s_t_x, sp_x, t_x, st_x, s_t_m, sp_m, t_m, st_m, _ = encoder_output
            x, m = decoder.collapse_and_combine_hwtc(
                s_t_x, sp_x, t_x, st_x, s_t_m, sp_m, t_m, st_m
            )
            x, _, _, _, _ = decoder.split_x_y(x, m)
            self.assertTrue(x.shape[1] == 1, x.shape)

    def test_token_exit_cfgs_single_exit_equivalency(self):
        self._token_exit_cfgs_single_exit_equivalency(0)
        self._token_exit_cfgs_single_exit_equivalency(6)
        self._token_exit_cfgs_single_exit_equivalency(12)

    @torch.no_grad()
    def _token_exit_cfgs_single_exit_equivalency(self, depth):
        embedding_size, patch_size = 16, 1
        image_size = patch_size * 4
        num_timesteps = 3
        encoder = Encoder(embedding_size=embedding_size, num_heads=1, depth=12)
        encoder.eval()
        ds = Dataset(TIFS_FOLDER, False)
        for i in range(len(ds)):
            s_t_x, sp_x, t_x, st_x, months = self.to_tensor_with_batch_d(ds[i])
            masked_output = batch_subset_mask_galileo(
                s_t_x,
                sp_x,
                t_x,
                st_x,
                months,
                encode_ratio=0.25,
                decode_ratio=0.25,
                patch_size=patch_size,
                image_size=image_size,
                num_timesteps=num_timesteps,
                augmentation_strategies=None,
                masking_probabilities=[1] * len(MASKING_MODES),
                masking_function=MaskingFunctions.SPACE,
                max_unmasking_channels=4,
            )

            # for this test, we will keep the same
            # values per shape since we call layer norm
            # on each shape output
            token_exit_cfgs = {
                "S1": depth,
                "S2_RGB": depth,
                "S2_Red_Edge": depth,
                "S2_NIR_10m": depth,
                "S2_NIR_20m": depth,
                "S2_SWIR": depth,
                "NDVI": depth,
                "ERA5": depth,
                "TC": depth,
                "VIIRS": depth,
                "SRTM": depth,
                "DW": depth,
                "WC": depth,
                "LS": depth,
                "location": depth,
                "DW_static": depth,
                "WC_static": depth,
            }

            encoder_output_depth = encoder(
                masked_output.space_time_x,
                masked_output.space_x,
                masked_output.time_x,
                masked_output.static_x,
                torch.zeros_like(masked_output.space_time_mask),
                torch.zeros_like(masked_output.space_mask),
                torch.zeros_like(masked_output.time_mask),
                torch.zeros_like(masked_output.static_mask),
                masked_output.months.long(),
                patch_size=patch_size,
                exit_after=depth,
            )

            encoder_output_depth_varied = encoder(
                masked_output.space_time_x,
                masked_output.space_x,
                masked_output.time_x,
                masked_output.static_x,
                torch.zeros_like(masked_output.space_time_mask),
                torch.zeros_like(masked_output.space_mask),
                torch.zeros_like(masked_output.time_mask),
                torch.zeros_like(masked_output.static_mask),
                masked_output.months.long(),
                patch_size=patch_size,
                token_exit_cfg=token_exit_cfgs,
                exit_after=None,
            )

            # s_t_x
            self.assertTrue(torch.equal(encoder_output_depth_varied[0], encoder_output_depth[0]))

            # sp_x
            self.assertTrue(torch.equal(encoder_output_depth_varied[1], encoder_output_depth[1]))

            # t_x
            self.assertTrue(torch.equal(encoder_output_depth_varied[2], encoder_output_depth[2]))

            # st_x
            self.assertTrue(torch.equal(encoder_output_depth_varied[3], encoder_output_depth[3]))

    def test_single_file_galileo_matches_galileo(self):
        org_model = Encoder.load_from_folder(DATA_FOLDER / "models/nano")
        sf_model = SingleFileEncoder.load_from_folder(
            DATA_FOLDER / "models/nano", device=torch.device("cpu")
        )

        for model_p, sf_model_p in zip(org_model.parameters(), sf_model.parameters()):
            self.assertTrue(torch.equal(model_p, sf_model_p))