File size: 11,392 Bytes
b20c769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from functools import partial
from typing import List

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from timm.models.vision_transformer import PatchEmbed, VisionTransformer


class SatMAEWrapper(nn.Module):
    def __init__(
        self,
        pretrained_path,
        size="large",
        img_size=96,
        do_pool=True,
        temporal_pooling: str = "mean",
    ):
        super().__init__()
        if size == "large":
            self.encoder = vit_large(img_size=img_size, patch_size=8, in_chans=10)
            self.dim = 1024
        elif size == "base":
            self.encoder = vit_base(img_size=img_size, patch_size=8, in_chans=10)
            self.dim = 768

        checkpoint = torch.load(pretrained_path, map_location="cpu")["model"]

        if img_size != 96:
            checkpoint = interpolate_pos_embed(self.encoder, checkpoint)

        self.encoder.load_state_dict(checkpoint, strict=False)
        self.image_resolution = img_size
        self.do_pool = do_pool
        self.patch_size = 8
        self.grid_size = int(self.image_resolution / self.patch_size)
        if temporal_pooling not in ["mean", "max"]:
            raise ValueError(
                f"Expected temporal_pooling to be in ['mean', 'max'], got {temporal_pooling}"
            )
        self.temporal_pooling = temporal_pooling

    def resize(self, images):
        images = F.interpolate(
            images,
            size=(self.image_resolution, self.image_resolution),
            mode="bilinear",
            align_corners=False,
        )
        return images

    def preproccess(self, images):
        if len(images.shape) == 5:
            # take the mean along the temporal dimension
            images = torch.mean(images, dim=2)
        images = rearrange(images, "b h w c -> b c h w")
        assert images.shape[1] == 13
        return self.resize(images)  # (bsz, C, H, W)

    def forward(self, s2=None, s1=None, months=None):
        if s2 is None:
            raise ValueError("S2 can't be None for SatMAE")
        if len(s2.shape) == 5:
            outputs_l: List[torch.Tensor] = []
            for timestep in range(s2.shape[3]):
                image = self.preproccess(s2[:, :, :, timestep])
                output = self.encoder.forward_features(image)
                # output shape for atto: (bsz, 320, 7, 7)
                # output shape for tiny: (bsz, 768, 6, 6)
                if self.do_pool:
                    output = output.mean(dim=1)
                else:
                    output = rearrange(output, "b (c_g l) d -> b l c_g d", c_g=3).mean(dim=-2)
                outputs_l.append(output)
            outputs_t = torch.stack(outputs_l, dim=-1)  # b h w d t
            if self.temporal_pooling == "mean":
                return outputs_t.mean(dim=-1)
            else:
                return torch.amax(outputs_t, dim=-1)
        else:
            s2 = self.preproccess(s2)
            output = self.encoder.forward_features(s2)
            if self.do_pool:
                return output.mean(dim=1)
            else:
                return rearrange(output, "b (c_g l) d -> b l c_g d", c_g=3).mean(dim=-2)


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=float)
    grid_w = np.arange(grid_size, dtype=float)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=float)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = torch.arange(embed_dim // 2, dtype=float, device=pos.device)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = torch.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    emb = torch.cat([emb_sin, emb_cos], dim=1)  # (M, D)
    return emb.double()


# --------------------------------------------------------
# Interpolate position embeddings for high-resolution
# References:
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
def interpolate_pos_embed(model, checkpoint_model):
    if "pos_embed" in checkpoint_model:
        pos_embed_checkpoint = checkpoint_model["pos_embed"]
        embedding_size = pos_embed_checkpoint.shape[-1]
        try:
            num_patches = model.patch_embed.num_patches
        except AttributeError:
            num_patches = model.patch_embed[0].num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches**0.5)
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print(
                "Position interpolate from %dx%d to %dx%d"
                % (orig_size, orig_size, new_size, new_size)
            )
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(
                0, 3, 1, 2
            )
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
            )
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model["pos_embed"] = new_pos_embed

        return checkpoint_model


class GroupChannelsVisionTransformer(VisionTransformer):
    """Vision Transformer with support for global average pooling"""

    def __init__(
        self,
        global_pool=False,
        channel_embed=256,
        channel_groups=((0, 1, 2, 6), (3, 4, 5, 7), (8, 9)),
        **kwargs,
    ):
        super().__init__(**kwargs)
        img_size = kwargs["img_size"]
        patch_size = kwargs["patch_size"]
        embed_dim = kwargs["embed_dim"]

        self.channel_groups = channel_groups

        self.patch_embed = nn.ModuleList(
            [PatchEmbed(img_size, patch_size, len(group), embed_dim) for group in channel_groups]
        )
        num_patches = self.patch_embed[0].num_patches

        # Positional and channel embed
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim - channel_embed))
        pos_embed = get_2d_sincos_pos_embed(
            self.pos_embed.shape[-1], int(num_patches**0.5), cls_token=True
        )
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        num_groups = len(channel_groups)
        self.channel_embed = nn.Parameter(torch.zeros(1, num_groups, channel_embed))
        chan_embed = get_1d_sincos_pos_embed_from_grid(
            self.channel_embed.shape[-1], torch.arange(num_groups).numpy()
        )
        self.channel_embed.data.copy_(torch.from_numpy(chan_embed).float().unsqueeze(0))

        # Extra embedding for cls to fill embed_dim
        self.channel_cls_embed = nn.Parameter(torch.zeros(1, 1, channel_embed))
        channel_cls_embed = torch.zeros((1, channel_embed))
        self.channel_cls_embed.data.copy_(channel_cls_embed.float().unsqueeze(0))

        self.global_pool = global_pool
        if self.global_pool:
            norm_layer = kwargs["norm_layer"]
            embed_dim = kwargs["embed_dim"]
            self.fc_norm = norm_layer(embed_dim)

            del self.norm  # remove the original norm

    def forward_features(self, x):
        b, c, h, w = x.shape

        x_c_embed = []
        for i, group in enumerate(self.channel_groups):
            x_c = x[:, group, :, :]
            x_c_embed.append(self.patch_embed[i](x_c))  # (N, L, D)

        x = torch.stack(x_c_embed, dim=1)  # (N, G, L, D)
        _, G, L, D = x.shape

        # add channel embed
        channel_embed = self.channel_embed.unsqueeze(2)  # (1, c, 1, cD)
        pos_embed = self.pos_embed[:, 1:, :].unsqueeze(1)  # (1, 1, L, pD)

        # Channel embed same across (x,y) position, and pos embed same across channel (c)
        channel_embed = channel_embed.expand(-1, -1, pos_embed.shape[2], -1)  # (1, c, L, cD)
        pos_embed = pos_embed.expand(-1, channel_embed.shape[1], -1, -1)  # (1, c, L, pD)
        pos_channel = torch.cat((pos_embed, channel_embed), dim=-1)  # (1, c, L, D)

        # add pos embed w/o cls token
        x = x + pos_channel  # (N, G, L, D)
        x = x.view(b, -1, D)  # (N, G*L, D)

        cls_pos_channel = torch.cat(
            (self.pos_embed[:, :1, :], self.channel_cls_embed), dim=-1
        )  # (1, 1, D)
        cls_tokens = cls_pos_channel + self.cls_token.expand(b, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)  # (N, 1 + c*L, D)
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        return x[:, 1:, :]  # remove cls token


def vit_base(**kwargs):
    model = GroupChannelsVisionTransformer(
        channel_embed=256,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    return model


def vit_large(**kwargs):
    model = GroupChannelsVisionTransformer(
        channel_embed=256,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    return model