Spaces:
Sleeping
Sleeping
File size: 18,688 Bytes
b20c769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import itertools
import math
import warnings
from pathlib import Path
from typing import List
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import einsum, nn
class CROMAWrapper(nn.Module):
def __init__(
self,
weights_path: Path,
size="base",
modality="optical",
do_pool=True,
temporal_pooling: str = "mean",
):
super().__init__()
assert modality in ["SAR", "optical"]
if size == "base":
self.croma = PretrainedCROMA(
str(weights_path / "CROMA_base.pt"), size, modality=modality, image_resolution=120
)
self.dim = 768
elif size == "large":
self.croma = PretrainedCROMA(
str(weights_path / "CROMA_large.pt"), size, modality=modality, image_resolution=120
)
self.dim = 1024
else:
raise ValueError(f"size must be base or large, not {size}")
self.image_resolution = 120
self.patch_size = 8
self.grid_size = int(self.image_resolution / self.patch_size)
self.do_pool = do_pool
if temporal_pooling not in ["mean", "max"]:
raise ValueError(
f"Expected temporal_pooling to be in ['mean', 'max'], got {temporal_pooling}"
)
self.temporal_pooling = temporal_pooling
def resize(self, images):
images = F.interpolate(
images,
size=(self.image_resolution, self.image_resolution),
mode="bilinear",
align_corners=False,
)
return images
def preproccess(self, images):
images = rearrange(images, "b h w c -> b c h w")
assert images.shape[1] == 13
# remove cirrus
remove_idx = 10
images = torch.cat(
[images[:, :remove_idx, :, :], images[:, (remove_idx + 1) :, :, :]], dim=1
)
assert images.shape[1] == 12
return self.resize(images) # (bsz, 12, 120, 120)
def preproccess_s1(self, images):
images = rearrange(images, "b h w c -> b c h w")
assert images.shape[1] == 2
return self.resize(images) # (bsz, 2, 120, 120)
def forward(self, s2=None, s1=None, months=None):
output_key = "optical_GAP" if self.do_pool else "optical_encodings"
if s1 is not None:
assert s2 is None, "joint s2 and s1 not implemented for CROMA"
if len(s1.shape) == 5:
outputs: List[torch.Tensor] = []
for timestep in range(s1.shape[3]):
image = self.preproccess_s1(s1[:, :, :, timestep])
outputs.append(self.croma(SAR_images=image)[output_key])
outputs_t = torch.stack(outputs, dim=-1) # b h w d t
if self.temporal_pooling == "mean":
return outputs_t.mean(dim=-1)
else:
return torch.amax(outputs_t, dim=-1)
else:
s1 = self.preproccess_s1(s1)
return self.croma(SAR_images=s1)[output_key]
else:
# just S2
if len(s2.shape) == 5:
outputs: List[torch.Tensor] = []
for timestep in range(s2.shape[3]):
image = self.preproccess(s2[:, :, :, timestep])
outputs.append(self.croma(optical_images=image)[output_key])
outputs_t = torch.stack(outputs, dim=-1) # b h w d t
if self.temporal_pooling == "mean":
return outputs_t.mean(dim=-1)
else:
return torch.amax(outputs_t, dim=-1)
else:
s2 = self.preproccess(s2)
return self.croma(optical_images=s2)[output_key]
class PretrainedCROMA(nn.Module):
def __init__(
self, pretrained_path="CROMA_base.pt", size="base", modality="both", image_resolution=120
):
"""
NOTE: image_resolution is not the spatial, spectral, or temporal resolution. It is the height and width of the image, in pixels.
E.g., CROMA was pretrained on 120x120px images, hence image_resolution is 120 by default
"""
super().__init__()
# check types
assert isinstance(pretrained_path, str)
assert isinstance(size, str)
assert isinstance(modality, str)
assert isinstance(image_resolution, int)
# check values
assert size in ["base", "large"], f"size must be either base or large, not {size}"
assert (
image_resolution % 8 == 0
), f"image_resolution must be a multiple of 8, not {image_resolution}"
assert modality in [
"both",
"SAR",
"optical",
], f"modality must be either both, SAR, or optical, not {modality}"
# warn the user if the path contains a different size than the size parameter
if size == "base" and "large" in pretrained_path:
warnings.warn(
"The size is set to base, but the word large appears in the pretrained path!"
)
elif size == "large" and "base" in pretrained_path:
warnings.warn(
"The size is set to large, but the word base appears in the pretrained path!"
)
if size == "base":
self.encoder_dim = 768
self.encoder_depth = 12
self.num_heads = 16
self.patch_size = 8
else:
# large by default
self.encoder_dim = 1024
self.encoder_depth = 24
self.num_heads = 16
self.patch_size = 8
self.modality = modality
self.num_patches = int((image_resolution / 8) ** 2)
self.s1_channels = 2 # fixed at 2 SAR backscatter channels
self.s2_channels = 12 # fixed at 12 multispectral optical channels
self.attn_bias = get_2dalibi(num_heads=self.num_heads, num_patches=self.num_patches)
if modality in ["SAR", "both"]:
print("Initializing SAR encoder")
self.s1_encoder = ViT(
dim=self.encoder_dim,
depth=int(self.encoder_depth / 2),
in_channels=self.s1_channels,
)
self.GAP_FFN_s1 = nn.Sequential(
nn.LayerNorm(self.encoder_dim),
nn.Linear(
self.encoder_dim, int(4 * self.encoder_dim)
), # (BSZ, num_patches, inner_dim)
nn.GELU(), # (BSZ, num_patches, inner_dim)
nn.Linear(int(4 * self.encoder_dim), self.encoder_dim), # (BSZ, num_patches, dim)
)
# load weights
self.s1_encoder.load_state_dict(
torch.load(pretrained_path, map_location="cpu")["s1_encoder"]
)
self.GAP_FFN_s1.load_state_dict(
torch.load(pretrained_path, map_location="cpu")["s1_GAP_FFN"]
)
if modality in ["optical", "both"]:
print("Initializing optical encoder")
self.s2_encoder = ViT(
dim=self.encoder_dim, depth=self.encoder_depth, in_channels=self.s2_channels
)
self.GAP_FFN_s2 = nn.Sequential(
nn.LayerNorm(self.encoder_dim),
nn.Linear(
self.encoder_dim, int(4 * self.encoder_dim)
), # (BSZ, num_patches, inner_dim)
nn.GELU(), # (BSZ, num_patches, inner_dim)
nn.Linear(int(4 * self.encoder_dim), self.encoder_dim), # (BSZ, num_patches, dim)
)
# load weights
self.s2_encoder.load_state_dict(
torch.load(pretrained_path, map_location="cpu")["s2_encoder"]
)
self.GAP_FFN_s2.load_state_dict(
torch.load(pretrained_path, map_location="cpu")["s2_GAP_FFN"]
)
if modality == "both":
print("Initializing joint SAR-optical encoder")
self.cross_encoder = BaseTransformerCrossAttn(
dim=self.encoder_dim,
depth=int(self.encoder_depth / 2),
num_heads=self.num_heads,
)
# load weights
self.cross_encoder.load_state_dict(
torch.load(pretrained_path, map_location="cpu")["joint_encoder"]
)
def forward(self, SAR_images=None, optical_images=None):
return_dict = {}
if self.modality in ["SAR", "both"]:
assert (
SAR_images is not None
), f"Modality is set to {self.modality}, but SAR_images are None"
SAR_encodings = self.s1_encoder(
imgs=SAR_images, attn_bias=self.attn_bias.to(SAR_images.device)
) # (bsz, num_patches, encoder_dim)
SAR_GAP = self.GAP_FFN_s1(SAR_encodings.mean(dim=1)) # (bsz, encoder_dim)
return_dict["SAR_encodings"] = SAR_encodings
return_dict["SAR_GAP"] = SAR_GAP
if self.modality in ["optical", "both"]:
assert (
optical_images is not None
), f"Modality is set to {self.modality}, but optical_images are None"
optical_encodings = self.s2_encoder(
imgs=optical_images, attn_bias=self.attn_bias.to(optical_images.device)
) # (bsz, num_patches, encoder_dim)
optical_GAP = self.GAP_FFN_s2(optical_encodings.mean(dim=1)) # (bsz, encoder_dim)
return_dict["optical_encodings"] = optical_encodings
return_dict["optical_GAP"] = optical_GAP
if self.modality == "both":
joint_encodings = self.cross_encoder(
x=SAR_encodings,
context=optical_encodings,
relative_position_bias=self.attn_bias.to(optical_images.device),
) # (bsz, num_patches, encoder_dim)
joint_GAP = joint_encodings.mean(dim=1) # (bsz, encoder_dim)
return_dict["joint_encodings"] = joint_encodings
return_dict["joint_GAP"] = joint_GAP
return return_dict
def get_2dalibi(num_heads, num_patches):
# inspired by: https://github.com/ofirpress/attention_with_linear_biases
points = list(
itertools.product(range(int(math.sqrt(num_patches))), range(int(math.sqrt(num_patches))))
)
def get_slopes(n):
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
slopes = torch.Tensor(get_slopes(num_heads)).unsqueeze(1)
idxs = []
for p1 in points:
for p2 in points:
dist = math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
idxs.append(dist * slopes * -1)
all_bias = torch.cat(idxs, dim=1)
return all_bias.view(1, num_heads, num_patches, num_patches)
class FFN(nn.Module):
def __init__(
self,
dim,
mult=4,
dropout=0.0,
):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Linear(dim, inner_dim), # (BSZ, num_patches, inner_dim)
nn.GELU(), # (BSZ, num_patches, inner_dim)
nn.Dropout(dropout), # (BSZ, num_patches, inner_dim)
nn.Linear(inner_dim, dim), # (BSZ, num_patches, dim)
)
self.input_norm = nn.LayerNorm(dim)
def forward(self, x):
x = self.input_norm(x) # (BSZ, num_patches, dim)
return self.net(x) # (BSZ, num_patches, dim)
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
dropout=0.0,
):
super().__init__()
self.num_heads = num_heads
assert dim % num_heads == 0, "dim must be evenly divisible by num_heads"
dim_head = int(dim / num_heads)
self.scale = dim_head**-0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim)
self.input_norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x, relative_position_bias):
x = self.input_norm(x) # (BSZ, num_patches, dim)
q, k, v = self.to_qkv(x).chunk(3, dim=-1) # (BSZ, num_patches, dim)
q, k, v = map(
lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.num_heads), (q, k, v)
) # (BSZ, num_heads, num_patches, dim_head)
attention_scores = (
einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
) # (BSZ, num_heads, num_patches, num_patches)
attention_scores = (
attention_scores + relative_position_bias
) # (BSZ, num_heads, num_patches, num_patches)
attn = attention_scores.softmax(dim=-1) # (BSZ, num_heads, num_patches, num_patches)
attn = self.dropout(attn) # (BSZ, num_heads, num_patches, num_patches)
out = einsum(
"b h i j, b h j d -> b h i d", attn, v
) # (BSZ, num_heads, num_patches, dim_head)
out = rearrange(out, "b h n d -> b n (h d)") # (BSZ, num_patches, dim)
return self.to_out(out) # (BSZ, num_patches, dim)
class CrossAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
dropout=0.0,
):
super().__init__()
self.num_heads = num_heads
assert dim % num_heads == 0, "dim must be evenly divisible by num_heads"
dim_head = int(dim / num_heads)
self.scale = dim_head**-0.5
self.to_q = nn.Linear(dim, dim, bias=False)
self.to_k = nn.Linear(dim, dim, bias=False)
self.to_v = nn.Linear(dim, dim, bias=False)
self.to_out = nn.Linear(dim, dim)
self.input_norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x, context, relative_position_bias):
x = self.input_norm(x) # (BSZ, num_patches, dim)
context = self.input_norm(context) # (BSZ, num_patches, dim)
q = self.to_q(x) # (BSZ, num_patches, dim)
k = self.to_k(context) # (BSZ, num_patches, dim)
v = self.to_v(context) # (BSZ, num_patches, dim)
q, k, v = map(
lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.num_heads), (q, k, v)
) # (BSZ, num_heads, num_patches, dim_head)
attention_scores = (
einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
) # (BSZ, num_heads, num_patches, num_patches)
attention_scores = (
attention_scores + relative_position_bias
) # (BSZ, num_heads, num_patches, num_patches)
attn = attention_scores.softmax(dim=-1) # (BSZ, num_heads, num_patches, num_patches)
attn = self.dropout(attn) # (BSZ, num_heads, num_patches, num_patches)
out = einsum(
"b h i j, b h j d -> b h i d", attn, v
) # (BSZ, num_heads, num_patches, dim_head)
out = rearrange(out, "b h n d -> b n (h d)") # (BSZ, num_patches, dim)
return self.to_out(out) # (BSZ, num_patches, dim)
class BaseTransformer(nn.Module):
def __init__(
self,
dim,
depth,
num_heads=8,
attn_dropout=0.0,
ff_dropout=0.0,
ff_mult=4,
final_norm=True,
):
super().__init__()
self.final_norm = final_norm
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
Attention(dim=dim, num_heads=num_heads, dropout=attn_dropout),
FFN(dim=dim, mult=ff_mult, dropout=ff_dropout),
]
)
)
if self.final_norm:
self.norm_out = nn.LayerNorm(dim)
def forward(self, x, relative_position_bias=False):
for self_attn, ffn in self.layers:
x = self_attn(x, relative_position_bias) + x # (BSZ, num_patches, dim)
x = ffn(x) + x # (BSZ, num_patches, dim)
if self.final_norm:
return self.norm_out(x)
else:
return x
class BaseTransformerCrossAttn(nn.Module):
def __init__(
self,
dim,
depth,
num_heads=8,
attn_dropout=0.0,
ff_dropout=0.0,
ff_mult=4,
):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
Attention(dim=dim, num_heads=num_heads, dropout=attn_dropout),
CrossAttention(dim=dim, num_heads=num_heads, dropout=attn_dropout),
FFN(dim=dim, mult=ff_mult, dropout=ff_dropout),
]
)
)
self.norm_out = nn.LayerNorm(dim)
def forward(self, x, context, relative_position_bias):
for self_attn, cross_attn, ffn in self.layers:
x = self_attn(x, relative_position_bias) + x # (BSZ, num_patches, dim)
x = cross_attn(x, context, relative_position_bias) + x # (BSZ, num_patches, dim)
x = ffn(x) + x # (BSZ, num_patches, dim)
x = self.norm_out(x)
return x # (BSZ, num_patches, dim)
class ViT(nn.Module):
def __init__(self, dim, depth, in_channels):
super().__init__()
self.depth = depth
self.in_channels = in_channels
self.dim = dim
self.num_heads = 16 # always 16, for base and large models
self.patch_size = 8 # always 8, for base and large models
pixels_per_patch = int(self.patch_size * self.patch_size * in_channels)
self.linear_input = nn.Linear(pixels_per_patch, self.dim)
self.transformer = BaseTransformer(
dim=self.dim,
depth=self.depth,
num_heads=self.num_heads,
)
def forward(self, imgs, attn_bias):
x = rearrange(
imgs, "b c (h i) (w j) -> b (h w) (c i j)", i=self.patch_size, j=self.patch_size
)
# x is shape -> (bsz, num_patches, self.channels*self.patch_size*self.patch_size)
x = self.linear_input(x) # (bsz, num_patches, dim)
x = self.transformer(x, relative_position_bias=attn_bias)
return x
|