File size: 6,289 Bytes
b20c769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from typing import cast

import torch

from src.data import (
    SPACE_BAND_GROUPS_IDX,
    SPACE_TIME_BANDS_GROUPS_IDX,
    STATIC_BAND_GROUPS_IDX,
    TIME_BAND_GROUPS_IDX,
)
from src.data.dataset import (
    SPACE_BANDS,
    SPACE_TIME_BANDS,
    STATIC_BANDS,
    TIME_BANDS,
    Normalizer,
    to_cartesian,
)
from src.data.earthengine.eo import (
    DW_BANDS,
    ERA5_BANDS,
    LANDSCAN_BANDS,
    LOCATION_BANDS,
    S1_BANDS,
    S2_BANDS,
    SRTM_BANDS,
    TC_BANDS,
    VIIRS_BANDS,
    WC_BANDS,
)
from src.masking import MaskedOutput

DEFAULT_MONTH = 5


def construct_galileo_input(
    s1: torch.Tensor | None = None,  # [H, W, T, D]
    s2: torch.Tensor | None = None,  # [H, W, T, D]
    era5: torch.Tensor | None = None,  # [T, D]
    tc: torch.Tensor | None = None,  # [T, D]
    viirs: torch.Tensor | None = None,  # [T, D]
    srtm: torch.Tensor | None = None,  # [H, W, D]
    dw: torch.Tensor | None = None,  # [H, W, D]
    wc: torch.Tensor | None = None,  # [H, W, D]
    landscan: torch.Tensor | None = None,  # [D]
    latlon: torch.Tensor | None = None,  # [D]
    months: torch.Tensor | None = None,  # [T]
    normalize: bool = False,
):
    space_time_inputs = [s1, s2]
    time_inputs = [era5, tc, viirs]
    space_inputs = [srtm, dw, wc]
    static_inputs = [landscan, latlon]
    devices = [
        x.device
        for x in space_time_inputs + time_inputs + space_inputs + static_inputs
        if x is not None
    ]

    if len(devices) == 0:
        raise ValueError("At least one input must be not None")
    if not all(devices[0] == device for device in devices):
        raise ValueError("Received tensors on multiple devices")
    device = devices[0]

    # first, check all the input shapes are consistent
    timesteps_list = [x.shape[2] for x in space_time_inputs if x is not None] + [
        x.shape[1] for x in time_inputs if x is not None
    ]
    height_list = [x.shape[0] for x in space_time_inputs if x is not None] + [
        x.shape[0] for x in space_inputs if x is not None
    ]
    width_list = [x.shape[1] for x in space_time_inputs if x is not None] + [
        x.shape[1] for x in space_inputs if x is not None
    ]

    if len(timesteps_list) > 0:
        if not all(timesteps_list[0] == timestep for timestep in timesteps_list):
            raise ValueError("Inconsistent number of timesteps per input")
        t = timesteps_list[0]
    else:
        t = 1

    if len(height_list) > 0:
        if not all(height_list[0] == height for height in height_list):
            raise ValueError("Inconsistent heights per input")
        if not all(width_list[0] == width for width in width_list):
            raise ValueError("Inconsistent widths per input")
        h = height_list[0]
        w = width_list[0]
    else:
        h, w = 1, 1

    # now, we can construct our empty input tensors. By default, everything is masked
    s_t_x = torch.zeros((h, w, t, len(SPACE_TIME_BANDS)), dtype=torch.float, device=device)
    s_t_m = torch.ones(
        (h, w, t, len(SPACE_TIME_BANDS_GROUPS_IDX)), dtype=torch.float, device=device
    )
    sp_x = torch.zeros((h, w, len(SPACE_BANDS)), dtype=torch.float, device=device)
    sp_m = torch.ones((h, w, len(SPACE_BAND_GROUPS_IDX)), dtype=torch.float, device=device)
    t_x = torch.zeros((t, len(TIME_BANDS)), dtype=torch.float, device=device)
    t_m = torch.ones((t, len(TIME_BAND_GROUPS_IDX)), dtype=torch.float, device=device)
    st_x = torch.zeros((len(STATIC_BANDS)), dtype=torch.float, device=device)
    st_m = torch.ones((len(STATIC_BAND_GROUPS_IDX)), dtype=torch.float, device=device)

    for x, bands_list, group_key in zip([s1, s2], [S1_BANDS, S2_BANDS], ["S1", "S2"]):
        if x is not None:
            indices = [idx for idx, val in enumerate(SPACE_TIME_BANDS) if val in bands_list]
            groups_idx = [
                idx for idx, key in enumerate(SPACE_TIME_BANDS_GROUPS_IDX) if group_key in key
            ]
            s_t_x[:, :, :, indices] = x
            s_t_m[:, :, :, groups_idx] = 0

    for x, bands_list, group_key in zip(
        [srtm, dw, wc], [SRTM_BANDS, DW_BANDS, WC_BANDS], ["SRTM", "DW", "WC"]
    ):
        if x is not None:
            indices = [idx for idx, val in enumerate(SPACE_BANDS) if val in bands_list]
            groups_idx = [idx for idx, key in enumerate(SPACE_BAND_GROUPS_IDX) if group_key in key]
            sp_x[:, :, indices] = x
            sp_m[:, :, groups_idx] = 0

    for x, bands_list, group_key in zip(
        [era5, tc, viirs], [ERA5_BANDS, TC_BANDS, VIIRS_BANDS], ["ERA5", "TC", "VIIRS"]
    ):
        if x is not None:
            indices = [idx for idx, val in enumerate(TIME_BANDS) if val in bands_list]
            groups_idx = [idx for idx, key in enumerate(TIME_BAND_GROUPS_IDX) if group_key in key]
            t_x[:, indices] = x
            t_m[:, groups_idx] = 0

    for x, bands_list, group_key in zip(
        [landscan, latlon], [LANDSCAN_BANDS, LOCATION_BANDS], ["LS", "location"]
    ):
        if x is not None:
            if group_key == "location":
                # transform latlon to cartesian
                x = cast(torch.Tensor, to_cartesian(x[0], x[1]))
            indices = [idx for idx, val in enumerate(STATIC_BANDS) if val in bands_list]
            groups_idx = [
                idx for idx, key in enumerate(STATIC_BAND_GROUPS_IDX) if group_key in key
            ]
            st_x[indices] = x
            st_m[groups_idx] = 0

    if months is None:
        months = torch.ones((t), dtype=torch.long, device=device) * DEFAULT_MONTH
    else:
        if months.shape[0] != t:
            raise ValueError("Incorrect number of input months")

    if normalize:
        normalizer = Normalizer(std=False)
        s_t_x = torch.from_numpy(normalizer(s_t_x.cpu().numpy())).to(device)
        sp_x = torch.from_numpy(normalizer(sp_x.cpu().numpy())).to(device)
        t_x = torch.from_numpy(normalizer(t_x.cpu().numpy())).to(device)
        st_x = torch.from_numpy(normalizer(st_x.cpu().numpy())).to(device)

    return MaskedOutput(
        space_time_x=s_t_x,
        space_time_mask=s_t_m,
        space_x=sp_x,
        space_mask=sp_m,
        time_x=t_x,
        time_mask=t_m,
        static_x=st_x,
        static_mask=st_m,
        months=months,
    )