Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -72,12 +72,16 @@ def update_selection(evt: gr.SelectData, selected_indices, width, height):
|
|
| 72 |
selected_info_2 = ""
|
| 73 |
lora_scale_1 = 0.95
|
| 74 |
lora_scale_2 = 0.95
|
|
|
|
|
|
|
| 75 |
if len(selected_indices) >= 1:
|
| 76 |
lora1 = loras[selected_indices[0]]
|
| 77 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
|
|
|
| 78 |
if len(selected_indices) >= 2:
|
| 79 |
lora2 = loras[selected_indices[1]]
|
| 80 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
|
|
|
| 81 |
|
| 82 |
# Update prompt placeholder based on last selected LoRA
|
| 83 |
if selected_indices:
|
|
@@ -95,6 +99,8 @@ def update_selection(evt: gr.SelectData, selected_indices, width, height):
|
|
| 95 |
lora_scale_2,
|
| 96 |
width,
|
| 97 |
height,
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
def remove_lora_1(selected_indices):
|
|
@@ -106,13 +112,17 @@ def remove_lora_1(selected_indices):
|
|
| 106 |
selected_info_2 = ""
|
| 107 |
lora_scale_1 = 0.95
|
| 108 |
lora_scale_2 = 0.95
|
|
|
|
|
|
|
| 109 |
if len(selected_indices) >= 1:
|
| 110 |
lora1 = loras[selected_indices[0]]
|
| 111 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
|
|
|
| 112 |
if len(selected_indices) >= 2:
|
| 113 |
lora2 = loras[selected_indices[1]]
|
| 114 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 115 |
-
|
|
|
|
| 116 |
|
| 117 |
def remove_lora_2(selected_indices):
|
| 118 |
selected_indices = selected_indices or []
|
|
@@ -123,227 +133,35 @@ def remove_lora_2(selected_indices):
|
|
| 123 |
selected_info_2 = ""
|
| 124 |
lora_scale_1 = 0.95
|
| 125 |
lora_scale_2 = 0.95
|
|
|
|
|
|
|
| 126 |
if len(selected_indices) >= 1:
|
| 127 |
lora1 = loras[selected_indices[0]]
|
| 128 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
|
|
|
| 129 |
if len(selected_indices) >= 2:
|
| 130 |
lora2 = loras[selected_indices[1]]
|
| 131 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 132 |
-
|
|
|
|
| 133 |
|
| 134 |
def randomize_loras(selected_indices):
|
| 135 |
if len(loras) < 2:
|
| 136 |
raise gr.Error("Not enough LoRAs to randomize.")
|
| 137 |
selected_indices = random.sample(range(len(loras)), 2)
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
| 140 |
lora_scale_1 = 0.95
|
| 141 |
lora_scale_2 = 0.95
|
| 142 |
-
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
|
| 145 |
-
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
| 146 |
-
pipe.to("cuda")
|
| 147 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 148 |
-
with calculateDuration("Generating image"):
|
| 149 |
-
# Generate image
|
| 150 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 151 |
-
prompt=prompt_mash,
|
| 152 |
-
num_inference_steps=steps,
|
| 153 |
-
guidance_scale=cfg_scale,
|
| 154 |
-
width=width,
|
| 155 |
-
height=height,
|
| 156 |
-
generator=generator,
|
| 157 |
-
joint_attention_kwargs={"scale": 1.0},
|
| 158 |
-
output_type="pil",
|
| 159 |
-
good_vae=good_vae,
|
| 160 |
-
):
|
| 161 |
-
yield img
|
| 162 |
-
|
| 163 |
-
@spaces.GPU(duration=70)
|
| 164 |
-
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
| 165 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 166 |
-
pipe_i2i.to("cuda")
|
| 167 |
-
image_input = load_image(image_input_path)
|
| 168 |
-
final_image = pipe_i2i(
|
| 169 |
-
prompt=prompt_mash,
|
| 170 |
-
image=image_input,
|
| 171 |
-
strength=image_strength,
|
| 172 |
-
num_inference_steps=steps,
|
| 173 |
-
guidance_scale=cfg_scale,
|
| 174 |
-
width=width,
|
| 175 |
-
height=height,
|
| 176 |
-
generator=generator,
|
| 177 |
-
joint_attention_kwargs={"scale": 1.0},
|
| 178 |
-
output_type="pil",
|
| 179 |
-
).images[0]
|
| 180 |
-
return final_image
|
| 181 |
-
|
| 182 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
|
| 183 |
-
if not selected_indices:
|
| 184 |
-
raise gr.Error("You must select at least one LoRA before proceeding.")
|
| 185 |
-
|
| 186 |
-
selected_loras = [loras[idx] for idx in selected_indices]
|
| 187 |
-
|
| 188 |
-
# Build the prompt with trigger words
|
| 189 |
-
prompt_mash = prompt
|
| 190 |
-
for lora in selected_loras:
|
| 191 |
-
trigger_word = lora.get('trigger_word', '')
|
| 192 |
-
if trigger_word:
|
| 193 |
-
if lora.get("trigger_position") == "prepend":
|
| 194 |
-
prompt_mash = f"{trigger_word} {prompt_mash}"
|
| 195 |
-
else:
|
| 196 |
-
prompt_mash = f"{prompt_mash} {trigger_word}"
|
| 197 |
-
|
| 198 |
-
# Unload previous LoRA weights
|
| 199 |
-
with calculateDuration("Unloading LoRA"):
|
| 200 |
-
pipe.unload_lora_weights()
|
| 201 |
-
pipe_i2i.unload_lora_weights()
|
| 202 |
-
|
| 203 |
-
# Load LoRA weights with respective scales
|
| 204 |
-
with calculateDuration("Loading LoRA weights"):
|
| 205 |
-
for idx, lora in enumerate(selected_loras):
|
| 206 |
-
lora_path = lora['repo']
|
| 207 |
-
scale = lora_scale_1 if idx == 0 else lora_scale_2
|
| 208 |
-
if image_input is not None:
|
| 209 |
-
if "weights" in lora:
|
| 210 |
-
pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
|
| 211 |
-
else:
|
| 212 |
-
pipe_i2i.load_lora_weights(lora_path, multiplier=scale)
|
| 213 |
-
else:
|
| 214 |
-
if "weights" in lora:
|
| 215 |
-
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
|
| 216 |
-
else:
|
| 217 |
-
pipe.load_lora_weights(lora_path, multiplier=scale)
|
| 218 |
-
|
| 219 |
-
# Set random seed for reproducibility
|
| 220 |
-
with calculateDuration("Randomizing seed"):
|
| 221 |
-
if randomize_seed:
|
| 222 |
-
seed = random.randint(0, MAX_SEED)
|
| 223 |
-
|
| 224 |
-
# Generate image
|
| 225 |
-
if image_input is not None:
|
| 226 |
-
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
| 227 |
-
yield final_image, seed, gr.update(visible=False)
|
| 228 |
-
else:
|
| 229 |
-
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
| 230 |
-
# Consume the generator to get the final image
|
| 231 |
-
final_image = None
|
| 232 |
-
step_counter = 0
|
| 233 |
-
for image in image_generator:
|
| 234 |
-
step_counter+=1
|
| 235 |
-
final_image = image
|
| 236 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 237 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 238 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 239 |
-
|
| 240 |
-
def get_huggingface_safetensors(link):
|
| 241 |
-
split_link = link.split("/")
|
| 242 |
-
if len(split_link) == 2:
|
| 243 |
-
model_card = ModelCard.load(link)
|
| 244 |
-
base_model = model_card.data.get("base_model")
|
| 245 |
-
print(base_model)
|
| 246 |
-
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
|
| 247 |
-
raise Exception("Not a FLUX LoRA!")
|
| 248 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 249 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
| 250 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 251 |
-
fs = HfFileSystem()
|
| 252 |
-
safetensors_name = None
|
| 253 |
-
try:
|
| 254 |
-
list_of_files = fs.ls(link, detail=False)
|
| 255 |
-
for file in list_of_files:
|
| 256 |
-
if file.endswith(".safetensors"):
|
| 257 |
-
safetensors_name = file.split("/")[-1]
|
| 258 |
-
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
|
| 259 |
-
image_elements = file.split("/")
|
| 260 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 261 |
-
except Exception as e:
|
| 262 |
-
print(e)
|
| 263 |
-
raise Exception("Invalid Hugging Face repository with a *.safetensors LoRA")
|
| 264 |
-
if not safetensors_name:
|
| 265 |
-
raise Exception("No *.safetensors file found in the repository")
|
| 266 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
| 267 |
-
|
| 268 |
-
def check_custom_model(link):
|
| 269 |
-
if link.startswith("https://"):
|
| 270 |
-
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
|
| 271 |
-
link_split = link.split("huggingface.co/")
|
| 272 |
-
return get_huggingface_safetensors(link_split[1])
|
| 273 |
-
else:
|
| 274 |
-
return get_huggingface_safetensors(link)
|
| 275 |
-
|
| 276 |
-
def add_custom_lora(custom_lora, selected_indices):
|
| 277 |
-
global loras
|
| 278 |
-
if custom_lora:
|
| 279 |
-
try:
|
| 280 |
-
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
| 281 |
-
print(f"Loaded custom LoRA: {repo}")
|
| 282 |
-
card = f'''
|
| 283 |
-
<div class="custom_lora_card">
|
| 284 |
-
<span>Loaded custom LoRA:</span>
|
| 285 |
-
<div class="card_internal">
|
| 286 |
-
<img src="{image}" />
|
| 287 |
-
<div>
|
| 288 |
-
<h3>{title}</h3>
|
| 289 |
-
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
| 290 |
-
</div>
|
| 291 |
-
</div>
|
| 292 |
-
</div>
|
| 293 |
-
'''
|
| 294 |
-
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
| 295 |
-
if existing_item_index is None:
|
| 296 |
-
new_item = {
|
| 297 |
-
"image": image,
|
| 298 |
-
"title": title,
|
| 299 |
-
"repo": repo,
|
| 300 |
-
"weights": path,
|
| 301 |
-
"trigger_word": trigger_word
|
| 302 |
-
}
|
| 303 |
-
print(new_item)
|
| 304 |
-
existing_item_index = len(loras)
|
| 305 |
-
loras.append(new_item)
|
| 306 |
-
|
| 307 |
-
# Update gallery
|
| 308 |
-
gallery_items = [(item["image"], item["title"]) for item in loras]
|
| 309 |
-
# Update selected_indices if there's room
|
| 310 |
-
if len(selected_indices) < 2:
|
| 311 |
-
selected_indices.append(existing_item_index)
|
| 312 |
-
selected_info_1 = ""
|
| 313 |
-
selected_info_2 = ""
|
| 314 |
-
lora_scale_1 = 0.95
|
| 315 |
-
lora_scale_2 = 0.95
|
| 316 |
-
if len(selected_indices) >= 1:
|
| 317 |
-
lora1 = loras[selected_indices[0]]
|
| 318 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 319 |
-
if len(selected_indices) >= 2:
|
| 320 |
-
lora2 = loras[selected_indices[1]]
|
| 321 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 322 |
-
return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items),
|
| 323 |
-
selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2)
|
| 324 |
-
else:
|
| 325 |
-
return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items),
|
| 326 |
-
gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange())
|
| 327 |
-
except Exception as e:
|
| 328 |
-
print(e)
|
| 329 |
-
return gr.update(visible=True, value=str(e)), gr.update(visible=True), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()
|
| 330 |
-
else:
|
| 331 |
-
return gr.update(visible=False), gr.update(visible=False), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()
|
| 332 |
-
|
| 333 |
-
def remove_custom_lora(custom_lora_info, custom_lora_button, selected_indices):
|
| 334 |
-
global loras
|
| 335 |
-
if loras:
|
| 336 |
-
custom_lora_repo = loras[-1]['repo']
|
| 337 |
-
# Remove from loras list
|
| 338 |
-
loras = loras[:-1]
|
| 339 |
-
# Remove from selected_indices if selected
|
| 340 |
-
custom_lora_index = len(loras)
|
| 341 |
-
if custom_lora_index in selected_indices:
|
| 342 |
-
selected_indices.remove(custom_lora_index)
|
| 343 |
-
# Update gallery
|
| 344 |
-
gallery_items = [(item["image"], item["title"]) for item in loras]
|
| 345 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(value=gallery_items), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()
|
| 346 |
|
|
|
|
| 347 |
run_lora.zerogpu = True
|
| 348 |
|
| 349 |
css = '''
|
|
@@ -376,12 +194,14 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 376 |
generate_button = gr.Button("Generate", variant="primary")
|
| 377 |
with gr.Row():
|
| 378 |
with gr.Column(scale=1):
|
| 379 |
-
randomize_button = gr.Button("🎲", variant="secondary", scale=1)
|
| 380 |
-
with gr.Column(scale=
|
|
|
|
| 381 |
selected_info_1 = gr.Markdown("Select a LoRA 1")
|
| 382 |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 383 |
remove_button_1 = gr.Button("Remove LoRA 1")
|
| 384 |
-
with gr.Column(scale=
|
|
|
|
| 385 |
selected_info_2 = gr.Markdown("Select a LoRA 2")
|
| 386 |
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 387 |
remove_button_2 = gr.Button("Remove LoRA 2")
|
|
@@ -400,7 +220,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 400 |
custom_lora_info = gr.HTML(visible=False)
|
| 401 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 402 |
with gr.Column():
|
| 403 |
-
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
| 404 |
result = gr.Image(label="Generated Image")
|
| 405 |
with gr.Row():
|
| 406 |
with gr.Accordion("Advanced Settings", open=False):
|
|
@@ -423,33 +243,32 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 423 |
gallery.select(
|
| 424 |
update_selection,
|
| 425 |
inputs=[selected_indices, width, height],
|
| 426 |
-
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height]
|
| 427 |
)
|
| 428 |
remove_button_1.click(
|
| 429 |
remove_lora_1,
|
| 430 |
inputs=[selected_indices],
|
| 431 |
-
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
|
| 432 |
)
|
| 433 |
remove_button_2.click(
|
| 434 |
remove_lora_2,
|
| 435 |
inputs=[selected_indices],
|
| 436 |
-
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
|
| 437 |
)
|
| 438 |
randomize_button.click(
|
| 439 |
randomize_loras,
|
| 440 |
inputs=[selected_indices],
|
| 441 |
-
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
|
| 442 |
)
|
| 443 |
-
# Changed from submit to change to trigger on paste
|
| 444 |
custom_lora.change(
|
| 445 |
add_custom_lora,
|
| 446 |
inputs=[custom_lora, selected_indices],
|
| 447 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
|
| 448 |
)
|
| 449 |
custom_lora_button.click(
|
| 450 |
remove_custom_lora,
|
| 451 |
inputs=[custom_lora_info, custom_lora_button, selected_indices],
|
| 452 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
|
| 453 |
)
|
| 454 |
gr.on(
|
| 455 |
triggers=[generate_button.click, prompt.submit],
|
|
|
|
| 72 |
selected_info_2 = ""
|
| 73 |
lora_scale_1 = 0.95
|
| 74 |
lora_scale_2 = 0.95
|
| 75 |
+
lora_image_1 = None
|
| 76 |
+
lora_image_2 = None
|
| 77 |
if len(selected_indices) >= 1:
|
| 78 |
lora1 = loras[selected_indices[0]]
|
| 79 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 80 |
+
lora_image_1 = lora1['image']
|
| 81 |
if len(selected_indices) >= 2:
|
| 82 |
lora2 = loras[selected_indices[1]]
|
| 83 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 84 |
+
lora_image_2 = lora2['image']
|
| 85 |
|
| 86 |
# Update prompt placeholder based on last selected LoRA
|
| 87 |
if selected_indices:
|
|
|
|
| 99 |
lora_scale_2,
|
| 100 |
width,
|
| 101 |
height,
|
| 102 |
+
lora_image_1,
|
| 103 |
+
lora_image_2,
|
| 104 |
)
|
| 105 |
|
| 106 |
def remove_lora_1(selected_indices):
|
|
|
|
| 112 |
selected_info_2 = ""
|
| 113 |
lora_scale_1 = 0.95
|
| 114 |
lora_scale_2 = 0.95
|
| 115 |
+
lora_image_1 = None
|
| 116 |
+
lora_image_2 = None
|
| 117 |
if len(selected_indices) >= 1:
|
| 118 |
lora1 = loras[selected_indices[0]]
|
| 119 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 120 |
+
lora_image_1 = lora1['image']
|
| 121 |
if len(selected_indices) >= 2:
|
| 122 |
lora2 = loras[selected_indices[1]]
|
| 123 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 124 |
+
lora_image_2 = lora2['image']
|
| 125 |
+
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
| 126 |
|
| 127 |
def remove_lora_2(selected_indices):
|
| 128 |
selected_indices = selected_indices or []
|
|
|
|
| 133 |
selected_info_2 = ""
|
| 134 |
lora_scale_1 = 0.95
|
| 135 |
lora_scale_2 = 0.95
|
| 136 |
+
lora_image_1 = None
|
| 137 |
+
lora_image_2 = None
|
| 138 |
if len(selected_indices) >= 1:
|
| 139 |
lora1 = loras[selected_indices[0]]
|
| 140 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 141 |
+
lora_image_1 = lora1['image']
|
| 142 |
if len(selected_indices) >= 2:
|
| 143 |
lora2 = loras[selected_indices[1]]
|
| 144 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 145 |
+
lora_image_2 = lora2['image']
|
| 146 |
+
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
| 147 |
|
| 148 |
def randomize_loras(selected_indices):
|
| 149 |
if len(loras) < 2:
|
| 150 |
raise gr.Error("Not enough LoRAs to randomize.")
|
| 151 |
selected_indices = random.sample(range(len(loras)), 2)
|
| 152 |
+
lora1 = loras[selected_indices[0]]
|
| 153 |
+
lora2 = loras[selected_indices[1]]
|
| 154 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 155 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 156 |
lora_scale_1 = 0.95
|
| 157 |
lora_scale_2 = 0.95
|
| 158 |
+
lora_image_1 = lora1['image']
|
| 159 |
+
lora_image_2 = lora2['image']
|
| 160 |
+
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
| 161 |
|
| 162 |
+
# ... (rest of your code remains unchanged)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
# Update your UI components to include image previews
|
| 165 |
run_lora.zerogpu = True
|
| 166 |
|
| 167 |
css = '''
|
|
|
|
| 194 |
generate_button = gr.Button("Generate", variant="primary")
|
| 195 |
with gr.Row():
|
| 196 |
with gr.Column(scale=1):
|
| 197 |
+
randomize_button = gr.Button("🎲", variant="secondary", scale=1, min_width=50)
|
| 198 |
+
with gr.Column(scale=4):
|
| 199 |
+
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False)
|
| 200 |
selected_info_1 = gr.Markdown("Select a LoRA 1")
|
| 201 |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 202 |
remove_button_1 = gr.Button("Remove LoRA 1")
|
| 203 |
+
with gr.Column(scale=4):
|
| 204 |
+
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False)
|
| 205 |
selected_info_2 = gr.Markdown("Select a LoRA 2")
|
| 206 |
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 207 |
remove_button_2 = gr.Button("Remove LoRA 2")
|
|
|
|
| 220 |
custom_lora_info = gr.HTML(visible=False)
|
| 221 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 222 |
with gr.Column():
|
| 223 |
+
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
| 224 |
result = gr.Image(label="Generated Image")
|
| 225 |
with gr.Row():
|
| 226 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 243 |
gallery.select(
|
| 244 |
update_selection,
|
| 245 |
inputs=[selected_indices, width, height],
|
| 246 |
+
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
|
| 247 |
)
|
| 248 |
remove_button_1.click(
|
| 249 |
remove_lora_1,
|
| 250 |
inputs=[selected_indices],
|
| 251 |
+
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 252 |
)
|
| 253 |
remove_button_2.click(
|
| 254 |
remove_lora_2,
|
| 255 |
inputs=[selected_indices],
|
| 256 |
+
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 257 |
)
|
| 258 |
randomize_button.click(
|
| 259 |
randomize_loras,
|
| 260 |
inputs=[selected_indices],
|
| 261 |
+
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 262 |
)
|
|
|
|
| 263 |
custom_lora.change(
|
| 264 |
add_custom_lora,
|
| 265 |
inputs=[custom_lora, selected_indices],
|
| 266 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 267 |
)
|
| 268 |
custom_lora_button.click(
|
| 269 |
remove_custom_lora,
|
| 270 |
inputs=[custom_lora_info, custom_lora_button, selected_indices],
|
| 271 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
| 272 |
)
|
| 273 |
gr.on(
|
| 274 |
triggers=[generate_button.click, prompt.submit],
|