Spaces:
Runtime error
Runtime error
Upload k_diffusion_hunyuan.py
Browse files
diffusers_helper/pipelines/k_diffusion_hunyuan.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
|
| 5 |
+
from diffusers_helper.k_diffusion.wrapper import fm_wrapper
|
| 6 |
+
from diffusers_helper.utils import repeat_to_batch_size
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def flux_time_shift(t, mu=1.15, sigma=1.0):
|
| 10 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
|
| 14 |
+
k = (y2 - y1) / (x2 - x1)
|
| 15 |
+
b = y1 - k * x1
|
| 16 |
+
mu = k * context_length + b
|
| 17 |
+
mu = min(mu, math.log(exp_max))
|
| 18 |
+
return mu
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def get_flux_sigmas_from_mu(n, mu):
|
| 22 |
+
sigmas = torch.linspace(1, 0, steps=n + 1)
|
| 23 |
+
sigmas = flux_time_shift(sigmas, mu=mu)
|
| 24 |
+
return sigmas
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@torch.inference_mode()
|
| 28 |
+
def sample_hunyuan(
|
| 29 |
+
transformer,
|
| 30 |
+
sampler='unipc',
|
| 31 |
+
initial_latent=None,
|
| 32 |
+
concat_latent=None,
|
| 33 |
+
strength=1.0,
|
| 34 |
+
width=512,
|
| 35 |
+
height=512,
|
| 36 |
+
frames=16,
|
| 37 |
+
real_guidance_scale=1.0,
|
| 38 |
+
distilled_guidance_scale=6.0,
|
| 39 |
+
guidance_rescale=0.0,
|
| 40 |
+
shift=None,
|
| 41 |
+
num_inference_steps=25,
|
| 42 |
+
batch_size=None,
|
| 43 |
+
generator=None,
|
| 44 |
+
prompt_embeds=None,
|
| 45 |
+
prompt_embeds_mask=None,
|
| 46 |
+
prompt_poolers=None,
|
| 47 |
+
negative_prompt_embeds=None,
|
| 48 |
+
negative_prompt_embeds_mask=None,
|
| 49 |
+
negative_prompt_poolers=None,
|
| 50 |
+
dtype=torch.bfloat16,
|
| 51 |
+
device=None,
|
| 52 |
+
negative_kwargs=None,
|
| 53 |
+
callback=None,
|
| 54 |
+
**kwargs,
|
| 55 |
+
):
|
| 56 |
+
device = device or transformer.device
|
| 57 |
+
|
| 58 |
+
if batch_size is None:
|
| 59 |
+
batch_size = int(prompt_embeds.shape[0])
|
| 60 |
+
|
| 61 |
+
latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
|
| 62 |
+
|
| 63 |
+
B, C, T, H, W = latents.shape
|
| 64 |
+
seq_length = T * H * W // 4
|
| 65 |
+
|
| 66 |
+
if shift is None:
|
| 67 |
+
mu = calculate_flux_mu(seq_length, exp_max=7.0)
|
| 68 |
+
else:
|
| 69 |
+
mu = math.log(shift)
|
| 70 |
+
|
| 71 |
+
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
|
| 72 |
+
|
| 73 |
+
k_model = fm_wrapper(transformer)
|
| 74 |
+
|
| 75 |
+
if initial_latent is not None:
|
| 76 |
+
sigmas = sigmas * strength
|
| 77 |
+
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
|
| 78 |
+
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
|
| 79 |
+
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
|
| 80 |
+
|
| 81 |
+
if concat_latent is not None:
|
| 82 |
+
concat_latent = concat_latent.to(latents)
|
| 83 |
+
|
| 84 |
+
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
|
| 85 |
+
|
| 86 |
+
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
|
| 87 |
+
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
|
| 88 |
+
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
|
| 89 |
+
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
|
| 90 |
+
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
|
| 91 |
+
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
|
| 92 |
+
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
|
| 93 |
+
|
| 94 |
+
sampler_kwargs = dict(
|
| 95 |
+
dtype=dtype,
|
| 96 |
+
cfg_scale=real_guidance_scale,
|
| 97 |
+
cfg_rescale=guidance_rescale,
|
| 98 |
+
concat_latent=concat_latent,
|
| 99 |
+
positive=dict(
|
| 100 |
+
pooled_projections=prompt_poolers,
|
| 101 |
+
encoder_hidden_states=prompt_embeds,
|
| 102 |
+
encoder_attention_mask=prompt_embeds_mask,
|
| 103 |
+
guidance=distilled_guidance,
|
| 104 |
+
**kwargs,
|
| 105 |
+
),
|
| 106 |
+
negative=dict(
|
| 107 |
+
pooled_projections=negative_prompt_poolers,
|
| 108 |
+
encoder_hidden_states=negative_prompt_embeds,
|
| 109 |
+
encoder_attention_mask=negative_prompt_embeds_mask,
|
| 110 |
+
guidance=distilled_guidance,
|
| 111 |
+
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
|
| 112 |
+
)
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
if sampler == 'unipc':
|
| 116 |
+
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
|
| 117 |
+
else:
|
| 118 |
+
raise NotImplementedError(f'Sampler {sampler} is not supported.')
|
| 119 |
+
|
| 120 |
+
return results
|