File size: 11,585 Bytes
f623499 d868240 f623499 5f54938 d868240 f623499 5f54938 f623499 5b095ea 87043a7 5b095ea 5f54938 6ddaef7 0ef0084 9c5799a 18faeea 5f54938 18faeea 5f54938 7fde626 5f54938 5b095ea 9c5799a 5b095ea 2d6b1ed 5b095ea 9c5799a 8fed222 9c5799a 4a71a01 3118f65 5b095ea 3118f65 9c5799a 3118f65 5b095ea 7fde626 5b095ea 2d6b1ed 163abc1 e614523 18faeea 53d87ea 5a53749 9c5799a 7fde626 9c5799a 18faeea c808603 9c5799a 82d7967 4a71a01 82d7967 9c5799a 7c06d03 c808603 18faeea 163abc1 9c5799a 53d87ea 6a6cccd 53d87ea 73af091 6a957b3 b8d53ac f710121 6a6cccd aef7c31 e614523 9c5799a e614523 6a6cccd 9c5799a 6a6cccd 9c5799a 6a6cccd 15d0563 f710121 15d0563 f710121 15d0563 6a957b3 87043a7 5744aec 87043a7 5744aec bd01c27 53d87ea 7fde626 8746bb4 bd01c27 7fde626 619ce72 7fde626 619ce72 7fde626 6552d8e 7fde626 0b2b1a4 7fde626 cf9ab47 7fde626 6552d8e 7fde626 6552d8e 24382ac 6552d8e 24382ac 6552d8e 619ce72 53d87ea 7659936 5f54938 7fde626 7044139 5b095ea 7044139 5f54938 82d7967 e614523 5b095ea 87043a7 82d7967 87043a7 5f54938 687e594 4745558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import gradio as gr
import json
import pandas as pd
from urllib.request import urlopen
from urllib.error import URLError
import re
from datetime import datetime
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
Predictions_BUTTON_LABEL = "All model predictions are listed here. Access this URL for more details."
Predictions_BUTTON_TEXT = "https://huggingface.co/datasets/opencompass/compass_academic_predictions"
head_style = """
<style>
@media (min-width: 1536px)
{
.gradio-container {
min-width: var(--size-full) !important;
}
}
</style>
"""
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/hf-research/"
MAIN_LEADERBOARD_DESCRIPTION = """## Compass Academic Leaderboard (Full Version)
The CompassAcademic currently focuses on the comprehensive reasoning abilities of LLMs.
- The datasets selected so far include General Knowledge Reasoning (MMLU-Pro/GPQA-Diamond), Logical Reasoning (BBH), Mathematical Reasoning (MATH-500, AIME), Code Completion (LiveCodeBench, HumanEval), and Instruction Following (IFEval).
- Currently, the evaluation primarily targets chat models, with updates featuring the latest community models at irregular intervals.
- Prompts and reproduction scripts can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)🏆.
"""
Initial_title = 'Compass Academic Leaderboard'
MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
MODEL_TYPE = ['API', 'OpenSource']
def findfile():
model_meta_info = 'model-meta-info'
results_sum = 'hf-academic'
url = f"{DATA_URL_BASE}{model_meta_info}.json"
response = urlopen(url)
model_info = json.loads(response.read().decode('utf-8'))
url = f"{DATA_URL_BASE}{results_sum}.json"
response = urlopen(url)
results = json.loads(response.read().decode('utf-8'))
return model_info, results
model_info, results = findfile()
def findfile_predictions():
with open('data/hf-academic-predictions.json', 'r') as file:
predictions = json.load(file)
file.close()
return predictions
def make_results_tab(model_info, results):
models_list, datasets_list = [], []
for i in model_info:
models_list.append(i)
for i in results.keys():
datasets_list.append(i)
result_list = []
index = 1
for model in models_list:
this_result = {}
this_result['Index'] = index
this_result['Model Name'] = model['display_name']
this_result['Release Time'] = model['release_time']
this_result['Parameters'] = model['num_param']
this_result['OpenSource'] = model['release_type']
is_all_results_none = 1
for dataset in datasets_list:
if results[dataset][model['abbr']] != '-':
is_all_results_none = 0
this_result[dataset] = results[dataset][model['abbr']]
if is_all_results_none == 0:
result_list.append(this_result)
index += 1
df = pd.DataFrame(result_list)
return df, models_list, datasets_list
def calculate_column_widths(df):
column_widths = []
for column in df.columns:
header_length = len(str(column))
max_content_length = df[column].astype(str).map(len).max()
width = max(header_length * 10, max_content_length * 8) + 20
width = max(160, min(400, width))
column_widths.append(width)
return column_widths
def show_results_tab(df):
def filter_df(model_name, size_ranges, model_types):
newdf, modellist, datasetlist = make_results_tab(model_info, results)
# search model name
default_val = 'Input the Model Name'
if model_name != default_val:
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in newdf['Model Name']]
flag = [model_name.lower() in name for name in method_names]
newdf['TEMP'] = flag
newdf = newdf[newdf['TEMP'] == True]
newdf.pop('TEMP')
# filter size
if size_ranges:
def get_size_in_B(param):
if param == 'N/A':
return None
try:
return float(param.replace('B', ''))
except:
return None
newdf['size_in_B'] = newdf['Parameters'].apply(get_size_in_B)
mask = pd.Series(False, index=newdf.index)
for size_range in size_ranges:
if size_range == '<10B':
mask |= (newdf['size_in_B'] < 10) & (newdf['size_in_B'].notna())
elif size_range == '10B-70B':
mask |= (newdf['size_in_B'] >= 10) & (newdf['size_in_B'] < 70)
elif size_range == '>70B':
mask |= newdf['size_in_B'] >= 70
elif size_range == 'Unknown':
mask |= newdf['size_in_B'].isna()
newdf = newdf[mask]
newdf.drop('size_in_B', axis=1, inplace=True)
# filter opensource
if model_types:
type_mask = pd.Series(False, index=newdf.index)
for model_type in model_types:
if model_type == 'API':
type_mask |= newdf['OpenSource'] == 'API'
elif model_type == 'OpenSource':
type_mask |= newdf['OpenSource'] == 'OpenSource'
newdf = newdf[type_mask]
# for i in range(len(newdf)):
# newdf.loc[i, 'Index'] = i+1
return newdf
with gr.Row():
with gr.Column():
model_name = gr.Textbox(
value='Input the Model Name',
label='Search Model Name',
interactive=True
)
with gr.Column():
size_filter = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True,
)
with gr.Column():
type_filter = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True,
)
# with gr.Row():
# btn = gr.Button(value="生成表格", interactive=True)
with gr.Column():
table = gr.DataFrame(
value=df,
interactive=False,
wrap=False,
column_widths=calculate_column_widths(df),
)
model_name.submit(
fn=filter_df,
inputs=[model_name, size_filter, type_filter],
outputs=table
)
size_filter.change(
fn=filter_df,
inputs=[model_name, size_filter, type_filter],
outputs=table,
)
type_filter.change(
fn=filter_df,
inputs=[model_name, size_filter, type_filter],
outputs=table,
)
# def download_table():
# newdf, modellist, datasetlist = make_results_tab(model_info, results)
# return newdf.to_csv('df.csv',index=False,sep=',',encoding='utf-8',header=True)
# download_btn = gr.File(visible=True)
# btn.click(fn=download_table, inputs=None, outputs=download_btn)
with gr.Row():
with gr.Accordion("Storage of Model Predictions", open=True):
citation_button = gr.Textbox(
value=Predictions_BUTTON_TEXT,
label=Predictions_BUTTON_LABEL,
elem_id='predictions-button',
lines=2, # 增加行数
max_lines=4, # 设置最大行数
show_copy_button=True # 添加复制按钮使其更方便使用
)
with gr.Row():
with gr.Accordion("Citation", open=True):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button',
lines=6, # 增加行数
max_lines=8, # 设置最大行数
show_copy_button=True # 添加复制按钮使其更方便使用
)
ERROR_DF = {
"Type": ['NoneType'],
"Details": ["Do not find the combination predictions of the two options above."]
}
def show_predictions_tab(model_list, dataset_list, predictions):
def get_pre_df(model_name, dataset_name):
if dataset_name not in predictions.keys() or model_name not in predictions[dataset_name].keys():
return pd.DataFrame(ERROR_DF)
this_predictions = predictions[dataset_name][model_name]['predictions']
for i in range(len(this_predictions)):
this_predictions[i]['origin_prompt'] = str(this_predictions[i]['origin_prompt'])
this_predictions[i]['gold'] = str(this_predictions[i]['gold'])
this_predictions = pd.DataFrame(this_predictions)
return this_predictions
model_list = [i['abbr'] for i in model_list]
initial_predictions = get_pre_df('MiniMax-Text-01', 'IFEval')
with gr.Row():
with gr.Column():
model_drop = gr.Dropdown(
label="Model Name",
choices=model_list, # 去重获取主类别
interactive=True
)
with gr.Column():
dataset_drop = gr.Dropdown(
label="Dataset Name",
choices=dataset_list, # 去重获取主类别
interactive=True
)
with gr.Column():
table = gr.DataFrame(
value=initial_predictions,
interactive=False,
wrap=False,
max_height=1000,
column_widths=calculate_column_widths(initial_predictions),
)
model_drop.change(
fn=get_pre_df,
inputs=[model_drop, dataset_drop],
outputs=table,
)
dataset_drop.change(
fn=get_pre_df,
inputs=[model_drop, dataset_drop],
outputs=table,
)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button',
lines=6, # 增加行数
max_lines=8, # 设置最大行数
show_copy_button=True # 添加复制按钮使其更方便使用
)
def create_interface():
df, model_list, dataset_list = make_results_tab(model_info, results)
predictions = findfile_predictions()
with gr.Blocks() as demo:
# title_comp = gr.Markdown(Initial_title)
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.TabItem('Results', elem_id='main', id=0):
show_results_tab(df)
# with gr.TabItem('Predictions', elem_id='notmain', id=1):
# show_predictions_tab(model_list, dataset_list, predictions)
return demo
# model_info, results = findfile()
# breakpoint()
if __name__ == '__main__':
demo = create_interface()
demo.queue()
demo.launch(server_name='0.0.0.0')
|