Spaces:
Sleeping
Sleeping
File size: 19,734 Bytes
158554b ec9b09e 158554b c53f091 158554b ec9b09e 158554b ec9b09e 158554b c53f091 158554b cc70ebd 64d4c56 158554b d7945e9 158554b 0d98759 158554b ec9b09e 158554b c53f091 ec9b09e c53f091 ec9b09e 158554b c53f091 ec9b09e c53f091 ec9b09e 158554b 948a5b8 ec9b09e c53f091 ec9b09e c53f091 9757b1f d73d1b1 c53f091 158554b c53f091 158554b ec9b09e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
import fnmatch
import importlib
import json
import os
import random
import shutil
import sys
import time
import zipfile
from pathlib import Path
from typing import Optional
import numpy as np
import rl_zoo3.import_envs # noqa: F401 pylint: disable=unused-import
import torch as th
import yaml
from datasets import load_dataset
from huggingface_hub import HfApi
from huggingface_hub.utils import EntryNotFoundError
from huggingface_sb3 import EnvironmentName, ModelName, ModelRepoId, load_from_hub
from requests.exceptions import HTTPError
from rl_zoo3 import ALGOS, create_test_env, get_latest_run_id, get_saved_hyperparams
from rl_zoo3.exp_manager import ExperimentManager
from rl_zoo3.utils import get_model_path
from stable_baselines3.common.utils import set_random_seed
from src.logging import setup_logger
ALL_ENV_IDS = [
"AdventureNoFrameskip-v4",
"AirRaidNoFrameskip-v4",
"AlienNoFrameskip-v4",
"AmidarNoFrameskip-v4",
"AssaultNoFrameskip-v4",
"AsterixNoFrameskip-v4",
"AsteroidsNoFrameskip-v4",
"AtlantisNoFrameskip-v4",
"BankHeistNoFrameskip-v4",
"BattleZoneNoFrameskip-v4",
"BeamRiderNoFrameskip-v4",
"BerzerkNoFrameskip-v4",
"BowlingNoFrameskip-v4",
"BoxingNoFrameskip-v4",
"BreakoutNoFrameskip-v4",
"CarnivalNoFrameskip-v4",
"CentipedeNoFrameskip-v4",
"ChopperCommandNoFrameskip-v4",
"CrazyClimberNoFrameskip-v4",
"DefenderNoFrameskip-v4",
"DemonAttackNoFrameskip-v4",
"DoubleDunkNoFrameskip-v4",
"ElevatorActionNoFrameskip-v4",
"EnduroNoFrameskip-v4",
"FishingDerbyNoFrameskip-v4",
"FreewayNoFrameskip-v4",
"FrostbiteNoFrameskip-v4",
"GopherNoFrameskip-v4",
"GravitarNoFrameskip-v4",
"HeroNoFrameskip-v4",
"IceHockeyNoFrameskip-v4",
"JamesbondNoFrameskip-v4",
"JourneyEscapeNoFrameskip-v4",
"KangarooNoFrameskip-v4",
"KrullNoFrameskip-v4",
"KungFuMasterNoFrameskip-v4",
"MontezumaRevengeNoFrameskip-v4",
"MsPacmanNoFrameskip-v4",
"NameThisGameNoFrameskip-v4",
"PhoenixNoFrameskip-v4",
"PitfallNoFrameskip-v4",
"PongNoFrameskip-v4",
"PooyanNoFrameskip-v4",
"PrivateEyeNoFrameskip-v4",
"QbertNoFrameskip-v4",
"RiverraidNoFrameskip-v4",
"RoadRunnerNoFrameskip-v4",
"RobotankNoFrameskip-v4",
"SeaquestNoFrameskip-v4",
"SkiingNoFrameskip-v4",
"SolarisNoFrameskip-v4",
"SpaceInvadersNoFrameskip-v4",
"StarGunnerNoFrameskip-v4",
"TennisNoFrameskip-v4",
"TimePilotNoFrameskip-v4",
"TutankhamNoFrameskip-v4",
"UpNDownNoFrameskip-v4",
"VentureNoFrameskip-v4",
"VideoPinballNoFrameskip-v4",
"WizardOfWorNoFrameskip-v4",
"YarsRevengeNoFrameskip-v4",
"ZaxxonNoFrameskip-v4",
# Box2D
"BipedalWalker-v3",
"BipedalWalkerHardcore-v3",
"CarRacing-v2",
"LunarLander-v2",
"LunarLanderContinuous-v2",
# Toy text
"Blackjack-v1",
"CliffWalking-v0",
"FrozenLake-v1",
"FrozenLake8x8-v1",
# Classic control
"Acrobot-v1",
"CartPole-v1",
"MountainCar-v0",
"MountainCarContinuous-v0",
"Pendulum-v1",
# MuJoCo
"Ant-v4",
"HalfCheetah-v4",
"Hopper-v4",
"Humanoid-v4",
"HumanoidStandup-v4",
"InvertedDoublePendulum-v4",
"InvertedPendulum-v4",
"Pusher-v4",
"Reacher-v4",
"Swimmer-v4",
"Walker2d-v4",
# PyBullet
"AntBulletEnv-v0",
"HalfCheetahBulletEnv-v0",
"HopperBulletEnv-v0",
"HumanoidBulletEnv-v0",
"InvertedDoublePendulumBulletEnv-v0",
"InvertedPendulumSwingupBulletEnv-v0",
"MinitaurBulletEnv-v0",
"ReacherBulletEnv-v0",
"Walker2DBulletEnv-v0",
]
def download_from_hub(
algo: str,
env_name: EnvironmentName,
exp_id: int,
folder: str,
organization: str,
repo_name: Optional[str] = None,
force: bool = False,
) -> None:
"""
Try to load a model from the Huggingface hub
and save it following the RL Zoo structure.
Default repo name is {organization}/{algo}-{env_id}
where repo_name = {algo}-{env_id}
:param algo: Algorithm
:param env_name: Environment name
:param exp_id: Experiment id
:param folder: Log folder
:param organization: Huggingface organization
:param repo_name: Overwrite default repository name
:param force: Allow overwritting the folder
if it already exists.
"""
model_name = ModelName(algo, env_name)
if repo_name is None:
repo_name = model_name # Note: model name is {algo}-{env_name}
# Note: repo id is {organization}/{repo_name}
repo_id = ModelRepoId(organization, repo_name)
logger.info(f"Downloading from https://huggingface.co/{repo_id}")
checkpoint = load_from_hub(repo_id, model_name.filename)
try:
config_path = load_from_hub(repo_id, "config.yml")
except EntryNotFoundError: # hotfix for old models
config_path = load_from_hub(repo_id, "config.json")
with open(config_path, "r") as f:
config = json.load(f)
config_path = config_path.replace(".json", ".yml")
with open(config_path, "w") as f:
yaml.dump(config, f)
# If VecNormalize, download
try:
vec_normalize_stats = load_from_hub(repo_id, "vec_normalize.pkl")
except HTTPError:
logger.info("No normalization file")
vec_normalize_stats = None
try:
saved_args = load_from_hub(repo_id, "args.yml")
except EntryNotFoundError:
logger.info("No args file")
saved_args = None
try:
env_kwargs = load_from_hub(repo_id, "env_kwargs.yml")
except EntryNotFoundError:
logger.info("No env_kwargs file")
env_kwargs = None
try:
train_eval_metrics = load_from_hub(repo_id, "train_eval_metrics.zip")
except EntryNotFoundError:
logger.info("No train_eval_metrics file")
train_eval_metrics = None
if exp_id == 0:
exp_id = get_latest_run_id(os.path.join(folder, algo), env_name) + 1
# Sanity checks
if exp_id > 0:
log_path = os.path.join(folder, algo, f"{env_name}_{exp_id}")
else:
log_path = os.path.join(folder, algo)
# Check that the folder does not exist
log_folder = Path(log_path)
if log_folder.is_dir():
if force:
logger.info(f"The folder {log_path} already exists, overwritting")
# Delete the current one to avoid errors
shutil.rmtree(log_path)
else:
raise ValueError(
f"The folder {log_path} already exists, use --force to overwrite it, " "or choose '--exp-id 0' to create a new folder"
)
logger.info(f"Saving to {log_path}")
# Create folder structure
os.makedirs(log_path, exist_ok=True)
config_folder = os.path.join(log_path, env_name)
os.makedirs(config_folder, exist_ok=True)
# Copy config files and saved stats
shutil.copy(checkpoint, os.path.join(log_path, f"{env_name}.zip"))
if saved_args is not None:
shutil.copy(saved_args, os.path.join(config_folder, "args.yml"))
shutil.copy(config_path, os.path.join(config_folder, "config.yml"))
if env_kwargs is not None:
shutil.copy(env_kwargs, os.path.join(config_folder, "env_kwargs.yml"))
if vec_normalize_stats is not None:
shutil.copy(vec_normalize_stats, os.path.join(config_folder, "vecnormalize.pkl"))
# Extract monitor file and evaluation file
if train_eval_metrics is not None:
with zipfile.ZipFile(train_eval_metrics, "r") as zip_ref:
zip_ref.extractall(log_path)
def pattern_match(patterns, source_list):
if isinstance(patterns, str):
patterns = [patterns]
env_ids = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
env_ids.add(matching)
return sorted(list(env_ids))
def evaluate(
user_id,
repo_name,
env="CartPole-v1",
folder="rl-trained-agents",
algo="ppo",
# n_timesteps=1000,
n_episodes=50,
num_threads=-1,
n_envs=1,
exp_id=0,
verbose=1,
no_render=False,
deterministic=False,
device="auto",
load_best=False,
load_checkpoint=None,
load_last_checkpoint=False,
stochastic=False,
norm_reward=False,
seed=0,
reward_log="",
gym_packages=[],
env_kwargs=None,
custom_objects=False,
progress=False,
):
"""
Enjoy trained agent
:param env: (str) Environment ID
:param folder: (str) Log folder
:param algo: (str) RL Algorithm
:param n_timesteps: (int) Number of timesteps
:param num_threads: (int) Number of threads for PyTorch
:param n_envs: (int) Number of environments
:param exp_id: (int) Experiment ID (default: 0: latest, -1: no exp folder)
:param verbose: (int) Verbose mode (0: no output, 1: INFO)
:param no_render: (bool) Do not render the environment (useful for tests)
:param deterministic: (bool) Use deterministic actions
:param device: (str) PyTorch device to be use (ex: cpu, cuda...)
:param load_best: (bool) Load best model instead of last model if available
:param load_checkpoint: (int) Load checkpoint instead of last model if available
:param load_last_checkpoint: (bool) Load last checkpoint instead of last model if available
:param stochastic: (bool) Use stochastic actions
:param norm_reward: (bool) Normalize reward if applicable (trained with VecNormalize)
:param seed: (int) Random generator seed
:param reward_log: (str) Where to log reward
:param gym_packages: (List[str]) Additional external Gym environment package modules to import
:param env_kwargs: (Dict[str, Any]) Optional keyword argument to pass to the env constructor
:param custom_objects: (bool) Use custom objects to solve loading issues
:param progress: (bool) if toggled, display a progress bar using tqdm and rich
"""
# Going through custom gym packages to let them register in the global registory
for env_module in gym_packages:
importlib.import_module(env_module)
env_name = EnvironmentName(env)
# try:
# _, model_path, log_path = get_model_path(
# exp_id,
# folder,
# algo,
# env_name,
# load_best,
# load_checkpoint,
# load_last_checkpoint,
# )
# except (AssertionError, ValueError) as e:
# # Special case for rl-trained agents
# # auto-download from the hub
# if "rl-trained-agents" not in folder:
# raise e
# else:
# logger.info("Pretrained model not found, trying to download it from sb3 Huggingface hub: https://huggingface.co/sb3")
# Auto-download
download_from_hub(
algo=algo,
env_name=env_name,
exp_id=exp_id,
folder=folder,
# organization="sb3",
organization=user_id,
# repo_name=None,
repo_name=repo_name,
force=False,
)
# Try again
_, model_path, log_path = get_model_path(
exp_id,
folder,
algo,
env_name,
load_best,
load_checkpoint,
load_last_checkpoint,
)
logger.info(f"Loading {model_path}")
# Off-policy algorithm only support one env for now
off_policy_algos = ["qrdqn", "dqn", "ddpg", "sac", "her", "td3", "tqc"]
set_random_seed(seed)
if num_threads > 0:
if verbose > 1:
logger.info(f"Setting torch.num_threads to {num_threads}")
th.set_num_threads(num_threads)
is_atari = ExperimentManager.is_atari(env_name.gym_id)
is_minigrid = ExperimentManager.is_minigrid(env_name.gym_id)
stats_path = os.path.join(log_path, env_name)
hyperparams, maybe_stats_path = get_saved_hyperparams(stats_path, norm_reward=norm_reward, test_mode=True)
# load env_kwargs if existing
env_kwargs = {}
args_path = os.path.join(log_path, env_name, "args.yml")
if os.path.isfile(args_path):
with open(args_path) as f:
loaded_args = yaml.load(f, Loader=yaml.UnsafeLoader)
if loaded_args["env_kwargs"] is not None:
env_kwargs = loaded_args["env_kwargs"]
# overwrite with command line arguments
if env_kwargs is not None:
env_kwargs.update(env_kwargs)
log_dir = reward_log if reward_log != "" else None
env = create_test_env(
env_name.gym_id,
n_envs=n_envs,
stats_path=maybe_stats_path,
seed=seed,
log_dir=log_dir,
should_render=not no_render,
hyperparams=hyperparams,
env_kwargs=env_kwargs,
)
kwargs = dict(seed=seed)
if algo in off_policy_algos:
# Dummy buffer size as we don't need memory to enjoy the trained agent
kwargs.update(dict(buffer_size=1))
# Hack due to breaking change in v1.6
# handle_timeout_termination cannot be at the same time
# with optimize_memory_usage
if "optimize_memory_usage" in hyperparams:
kwargs.update(optimize_memory_usage=False)
# Check if we are running python 3.8+
# we need to patch saved model under python 3.6/3.7 to load them
newer_python_version = sys.version_info.major == 3 and sys.version_info.minor >= 8
custom_objects = {}
if newer_python_version or custom_objects:
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
if "HerReplayBuffer" in hyperparams.get("replay_buffer_class", ""):
kwargs["env"] = env
model = ALGOS[algo].load(model_path, custom_objects=custom_objects, device=device, **kwargs)
obs = env.reset()
# Deterministic by default except for atari games
stochastic = stochastic or (is_atari or is_minigrid) and not deterministic
deterministic = not stochastic
episode_reward = 0.0
episode_rewards, episode_lengths = [], []
ep_len = 0
# For HER, monitor success rate
successes = []
lstm_states = None
episode_start = np.ones((env.num_envs,), dtype=bool)
# generator = range(n_timesteps)
# if progress:
# if tqdm is None:
# raise ImportError("Please install tqdm and rich to use the progress bar")
# generator = tqdm(generator)
try:
# for _ in generator:
while len(episode_rewards) < n_episodes:
action, lstm_states = model.predict(
obs, # type: ignore[arg-type]
state=lstm_states,
episode_start=episode_start,
deterministic=deterministic,
)
obs, reward, done, infos = env.step(action)
episode_start = done
if not no_render:
env.render("human")
episode_reward += reward[0]
ep_len += 1
if n_envs == 1:
# For atari the return reward is not the atari score
# so we have to get it from the infos dict
if is_atari and infos is not None and verbose >= 1:
episode_infos = infos[0].get("episode")
if episode_infos is not None:
logger.info(f"Atari Episode Score: {episode_infos['r']:.2f}")
logger.info(f"Atari Episode Length {episode_infos['l']}")
episode_rewards.append(episode_infos["r"])
episode_lengths.append(episode_infos["l"])
if done and not is_atari and verbose > 0:
# NOTE: for env using VecNormalize, the mean reward
# is a normalized reward when `--norm_reward` flag is passed
logger.info(f"Episode Reward: {episode_reward:.2f}")
logger.info(f"Episode Length {ep_len}")
episode_rewards.append(episode_reward)
episode_lengths.append(ep_len)
episode_reward = 0.0
ep_len = 0
# Reset also when the goal is achieved when using HER
if done and infos[0].get("is_success") is not None:
if verbose > 1:
logger.info(f"Success? {infos[0].get('is_success', False)}")
if infos[0].get("is_success") is not None:
successes.append(infos[0].get("is_success", False))
episode_reward, ep_len = 0.0, 0
except KeyboardInterrupt:
pass
if verbose > 0 and len(successes) > 0:
logger.info(f"Success rate: {100 * np.mean(successes):.2f}%")
if verbose > 0 and len(episode_rewards) > 0:
logger.info(f"{len(episode_rewards)} Episodes")
logger.info(f"Mean reward: {np.mean(episode_rewards):.2f} +/- {np.std(episode_rewards):.2f}")
if verbose > 0 and len(episode_lengths) > 0:
logger.info(f"Mean episode length: {np.mean(episode_lengths):.2f} +/- {np.std(episode_lengths):.2f}")
env.close()
return episode_rewards
logger = setup_logger(__name__)
API = HfApi(token=os.environ.get("TOKEN"))
RESULTS_REPO = "open-rl-leaderboard/results_v2"
def _backend_routine():
# List only the text classification models
sb3_models = [(model.modelId, model.sha) for model in API.list_models(filter=["reinforcement-learning", "stable-baselines3"])]
logger.info(f"Found {len(sb3_models)} SB3 models")
dataset = load_dataset(RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks")
evaluated_models = [("/".join([x["user_id"], x["model_id"]]), x["sha"]) for x in dataset]
pending_models = list(set(sb3_models) - set(evaluated_models))
logger.info(f"Found {len(pending_models)} pending models")
if len(pending_models) == 0:
return None
# Shuffle the dataset
random.shuffle(pending_models)
# Select a random model
repo_id, sha = pending_models.pop()
user_id, model_id = repo_id.split("/")
row = {"model_id": model_id, "user_id": user_id, "sha": sha}
# Run an evaluation on the models
try:
model_info = API.model_info(repo_id, revision=sha)
# Extract the environment IDs from the tags (usually only one)
env_ids = pattern_match(model_info.tags, ALL_ENV_IDS)
except Exception as e:
logger.error(f"Error fetching model info for {repo_id}: {e}")
logger.exception(e)
env_ids = []
if len(env_ids) > 0:
env = env_ids[0]
logger.info(f"Running evaluation on {user_id}/{model_id}")
algo = model_info.model_index[0]["name"].lower()
try:
episodic_returns = evaluate(user_id, model_id, env, "rl-trained-agents", algo, no_render=True, verbose=1)
row["status"] = "DONE"
row["env_id"] = env
row["episodic_returns"] = episodic_returns
except Exception as e:
logger.error(f"Error evaluating {model_id}: {e}")
logger.exception(e)
row["status"] = "FAILED"
else:
logger.error(f"No environment found for {model_id}")
row["status"] = "FAILED"
# load the last version of the dataset
dataset = load_dataset(RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks")
dataset = dataset.add_item(row)
dataset.push_to_hub(RESULTS_REPO, split="train", token=API.token)
time.sleep(60) # Sleep for 1 minute to avoid rate limiting
def backend_routine():
try:
_backend_routine()
except Exception as e:
logger.error(f"{e.__class__.__name__}: {str(e)}")
logger.exception(e)
if __name__ == "__main__":
while True:
backend_routine()
|