lewtun HF Staff commited on
Commit
38e69a0
·
1 Parent(s): 8c0e071

Move average to end

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -194,7 +194,7 @@ def agg_df(df, agg: str = "max"):
194
  # Drop date and aggregate results by model name
195
  df = df.drop("Date", axis=1).groupby("Model").agg(agg).reset_index()
196
 
197
- df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
198
 
199
  # Convert all values to percentage
200
  df[df.select_dtypes(include=["number"]).columns] *= 100.0
@@ -223,7 +223,7 @@ def filter_and_search(cols: list[str], search_query: str, agg: str):
223
  # Drop rows with NaN values
224
  df = df.copy().dropna(how="all", axis=0, subset=[c for c in df.columns if c in cols])
225
  # Recompute average
226
- df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
227
  # Apply rounding only to numeric columns
228
  numeric_cols = df.select_dtypes(include=["float64", "float32", "int64", "int32"]).columns
229
  df[numeric_cols] = df[numeric_cols].round(4)
 
194
  # Drop date and aggregate results by model name
195
  df = df.drop("Date", axis=1).groupby("Model").agg(agg).reset_index()
196
 
197
+ df.insert(loc=len(df.columns), column="Average", value=df.mean(axis=1, numeric_only=True))
198
 
199
  # Convert all values to percentage
200
  df[df.select_dtypes(include=["number"]).columns] *= 100.0
 
223
  # Drop rows with NaN values
224
  df = df.copy().dropna(how="all", axis=0, subset=[c for c in df.columns if c in cols])
225
  # Recompute average
226
+ df.insert(loc=len(df.columns), column="Average", value=df.mean(axis=1, numeric_only=True))
227
  # Apply rounding only to numeric columns
228
  numeric_cols = df.select_dtypes(include=["float64", "float32", "int64", "int32"]).columns
229
  df[numeric_cols] = df[numeric_cols].round(4)