Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| from dataclasses import dataclass | |
| from enum import Enum | |
| import pandas as pd | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| dummy: bool = False | |
| def fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| class AutoEvalColumn: # Auto evals column | |
| model_type_symbol = ColumnContent("T", "str", True, never_hidden=True) | |
| model = ColumnContent("Model", "markdown", True, never_hidden=True) | |
| average = ColumnContent("Average ⬆️", "number", True) | |
| arc = ColumnContent("ARC", "number", True) | |
| hellaswag = ColumnContent("HellaSwag", "number", True) | |
| mmlu = ColumnContent("MMLU", "number", True) | |
| truthfulqa = ColumnContent("TruthfulQA", "number", True) | |
| winogrande = ColumnContent("Winogrande", "number", True) | |
| gsm8k = ColumnContent("GSM8K", "number", True) | |
| drop = ColumnContent("DROP", "number", True) | |
| model_type = ColumnContent("Type", "str", False) | |
| weight_type = ColumnContent("Weight type", "str", False, True) | |
| precision = ColumnContent("Precision", "str", False) # , True) | |
| license = ColumnContent("Hub License", "str", False) | |
| params = ColumnContent("#Params (B)", "number", False) | |
| likes = ColumnContent("Hub ❤️", "number", False) | |
| still_on_hub = ColumnContent("Available on the hub", "bool", False) | |
| revision = ColumnContent("Model sha", "str", False, False) | |
| dummy = ColumnContent( | |
| "model_name_for_query", "str", False, dummy=True | |
| ) # dummy col to implement search bar (hidden by custom CSS) | |
| class EvalQueueColumn: # Queue column | |
| model = ColumnContent("model", "markdown", True) | |
| revision = ColumnContent("revision", "str", True) | |
| private = ColumnContent("private", "bool", True) | |
| precision = ColumnContent("precision", "str", True) | |
| weight_type = ColumnContent("weight_type", "str", "Original") | |
| status = ColumnContent("status", "str", True) | |
| baseline_row = { | |
| AutoEvalColumn.model.name: "<p>Baseline</p>", | |
| AutoEvalColumn.revision.name: "N/A", | |
| AutoEvalColumn.precision.name: None, | |
| AutoEvalColumn.average.name: 25.0, | |
| AutoEvalColumn.arc.name: 25.0, | |
| AutoEvalColumn.hellaswag.name: 25.0, | |
| AutoEvalColumn.mmlu.name: 25.0, | |
| AutoEvalColumn.truthfulqa.name: 25.0, | |
| AutoEvalColumn.winogrande.name: 50.0, | |
| AutoEvalColumn.gsm8k.name: 0.21, | |
| AutoEvalColumn.drop.name: 0.47, | |
| AutoEvalColumn.dummy.name: "baseline", | |
| AutoEvalColumn.model_type.name: "", | |
| } | |
| class ModelInfo: | |
| name: str | |
| symbol: str # emoji | |
| class ModelType(Enum): | |
| PT = ModelInfo(name="pretrained", symbol="🟢") | |
| FT = ModelInfo(name="fine-tuned", symbol="🔶") | |
| IFT = ModelInfo(name="instruction-tuned", symbol="⭕") | |
| RL = ModelInfo(name="RL-tuned", symbol="🟦") | |
| Unknown = ModelInfo(name="", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type): | |
| if "fine-tuned" in type or "🔶" in type: | |
| return ModelType.FT | |
| if "pretrained" in type or "🟢" in type: | |
| return ModelType.PT | |
| if "RL-tuned" in type or "🟦" in type: | |
| return ModelType.RL | |
| if "instruction-tuned" in type or "⭕" in type: | |
| return ModelType.IFT | |
| return ModelType.Unknown | |
| class Task: | |
| benchmark: str | |
| metric: str | |
| col_name: str | |
| class Tasks(Enum): | |
| arc = Task("arc:challenge", "acc_norm", AutoEvalColumn.arc.name) | |
| hellaswag = Task("hellaswag", "acc_norm", AutoEvalColumn.hellaswag.name) | |
| mmlu = Task("hendrycksTest", "acc", AutoEvalColumn.mmlu.name) | |
| truthfulqa = Task("truthfulqa:mc", "mc2", AutoEvalColumn.truthfulqa.name) | |
| winogrande = Task("winogrande", "acc", AutoEvalColumn.winogrande.name) | |
| gsm8k = Task("gsm8k", "acc", AutoEvalColumn.gsm8k.name) | |
| drop = Task("drop", "f1", AutoEvalColumn.drop.name) | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
| TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
| COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| BENCHMARK_COLS = [t.value.col_name for t in Tasks if t.value.col_name in fields(AutoEvalColumn)] | |
| NUMERIC_INTERVALS = { | |
| "?": pd.Interval(-1, 0, closed="right"), | |
| "~1.5": pd.Interval(0, 2, closed="right"), | |
| "~3": pd.Interval(2, 4, closed="right"), | |
| "~7": pd.Interval(4, 9, closed="right"), | |
| "~13": pd.Interval(9, 20, closed="right"), | |
| "~35": pd.Interval(20, 45, closed="right"), | |
| "~60": pd.Interval(45, 70, closed="right"), | |
| "70+": pd.Interval(70, 10000, closed="right"), | |
| } | |