Spaces:
Build error
Build error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import json
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from fastapi import FastAPI
|
9 |
+
from fastapi.responses import StreamingResponse, HTMLResponse
|
10 |
+
from fastrtc import (
|
11 |
+
AdditionalOutputs,
|
12 |
+
ReplyOnPause,
|
13 |
+
Stream,
|
14 |
+
AlgoOptions,
|
15 |
+
SileroVadOptions,
|
16 |
+
audio_to_bytes,
|
17 |
+
)
|
18 |
+
from transformers import (
|
19 |
+
AutoModelForSpeechSeq2Seq,
|
20 |
+
AutoProcessor,
|
21 |
+
pipeline,
|
22 |
+
)
|
23 |
+
from transformers.utils import is_flash_attn_2_available
|
24 |
+
|
25 |
+
from utils.logger_config import setup_logging
|
26 |
+
from utils.device import get_device, get_torch_and_np_dtypes
|
27 |
+
from utils.turn_server import get_rtc_credentials
|
28 |
+
|
29 |
+
# Load environment variables
|
30 |
+
load_dotenv()
|
31 |
+
load_dotenv('.env.local') # Load local environment variables if they exist
|
32 |
+
|
33 |
+
# Set deployment mode
|
34 |
+
os.environ["APP_MODE"] = "deployed"
|
35 |
+
os.environ["UI_MODE"] = "fastapi"
|
36 |
+
|
37 |
+
# Verify HF_TOKEN is set
|
38 |
+
if not os.getenv("HF_TOKEN"):
|
39 |
+
raise ValueError("HF_TOKEN environment variable is not set. Please set it in .env.local or as a secret in Hugging Face Spaces.")
|
40 |
+
|
41 |
+
setup_logging()
|
42 |
+
logger = logging.getLogger(__name__)
|
43 |
+
|
44 |
+
MODEL_ID = os.getenv("MODEL_ID", "openai/whisper-large-v3-turbo")
|
45 |
+
|
46 |
+
device = get_device(force_cpu=False)
|
47 |
+
torch_dtype, np_dtype = get_torch_and_np_dtypes(device, use_bfloat16=False)
|
48 |
+
logger.info(f"Using device: {device}, torch_dtype: {torch_dtype}, np_dtype: {np_dtype}")
|
49 |
+
|
50 |
+
attention = "flash_attention_2" if is_flash_attn_2_available() else "sdpa"
|
51 |
+
logger.info(f"Using attention: {attention}")
|
52 |
+
|
53 |
+
logger.info(f"Loading Whisper model: {MODEL_ID}")
|
54 |
+
|
55 |
+
try:
|
56 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
57 |
+
MODEL_ID,
|
58 |
+
torch_dtype=torch_dtype,
|
59 |
+
low_cpu_mem_usage=True,
|
60 |
+
use_safetensors=True,
|
61 |
+
attn_implementation=attention,
|
62 |
+
token=os.getenv("HF_TOKEN") # Use HF_TOKEN for model loading
|
63 |
+
)
|
64 |
+
model.to(device)
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Error loading ASR model: {e}")
|
67 |
+
logger.error(f"Are you providing a valid model ID? {MODEL_ID}")
|
68 |
+
raise
|
69 |
+
|
70 |
+
processor = AutoProcessor.from_pretrained(
|
71 |
+
MODEL_ID,
|
72 |
+
token=os.getenv("HF_TOKEN") # Use HF_TOKEN for processor loading
|
73 |
+
)
|
74 |
+
|
75 |
+
transcribe_pipeline = pipeline(
|
76 |
+
task="automatic-speech-recognition",
|
77 |
+
model=model,
|
78 |
+
tokenizer=processor.tokenizer,
|
79 |
+
feature_extractor=processor.feature_extractor,
|
80 |
+
torch_dtype=torch_dtype,
|
81 |
+
device=device,
|
82 |
+
)
|
83 |
+
|
84 |
+
# Warm up the model with empty audio
|
85 |
+
logger.info("Warming up Whisper model with dummy input")
|
86 |
+
warmup_audio = np.zeros((16000,), dtype=np_dtype) # 1s of silence
|
87 |
+
transcribe_pipeline(warmup_audio)
|
88 |
+
logger.info("Model warmup complete")
|
89 |
+
|
90 |
+
async def transcribe(audio: tuple[int, np.ndarray]):
|
91 |
+
sample_rate, audio_array = audio
|
92 |
+
logger.info(f"Sample rate: {sample_rate}Hz, Shape: {audio_array.shape}")
|
93 |
+
|
94 |
+
outputs = transcribe_pipeline(
|
95 |
+
audio_to_bytes(audio),
|
96 |
+
chunk_length_s=3,
|
97 |
+
batch_size=1,
|
98 |
+
generate_kwargs={
|
99 |
+
'task': 'transcribe',
|
100 |
+
'language': 'english',
|
101 |
+
},
|
102 |
+
)
|
103 |
+
yield AdditionalOutputs(outputs["text"].strip())
|
104 |
+
|
105 |
+
logger.info("Initializing FastRTC stream")
|
106 |
+
stream = Stream(
|
107 |
+
handler=ReplyOnPause(
|
108 |
+
transcribe,
|
109 |
+
algo_options=AlgoOptions(
|
110 |
+
audio_chunk_duration=0.6,
|
111 |
+
started_talking_threshold=0.2,
|
112 |
+
speech_threshold=0.1,
|
113 |
+
),
|
114 |
+
model_options=SileroVadOptions(
|
115 |
+
threshold=0.5,
|
116 |
+
min_speech_duration_ms=250,
|
117 |
+
max_speech_duration_s=30,
|
118 |
+
min_silence_duration_ms=2000,
|
119 |
+
window_size_samples=1024,
|
120 |
+
speech_pad_ms=400,
|
121 |
+
),
|
122 |
+
),
|
123 |
+
modality="audio",
|
124 |
+
mode="send",
|
125 |
+
additional_outputs=[
|
126 |
+
gr.Textbox(label="Transcript"),
|
127 |
+
],
|
128 |
+
additional_outputs_handler=lambda current, new: current + " " + new,
|
129 |
+
rtc_configuration=get_rtc_credentials(provider="hf", token=os.getenv("HF_TOKEN")) # Pass HF_TOKEN to get_rtc_credentials
|
130 |
+
)
|
131 |
+
|
132 |
+
app = FastAPI()
|
133 |
+
stream.mount(app)
|
134 |
+
|
135 |
+
@app.get("/")
|
136 |
+
async def index():
|
137 |
+
html_content = open("index.html").read()
|
138 |
+
rtc_config = get_rtc_credentials(provider="hf", token=os.getenv("HF_TOKEN")) # Pass HF_TOKEN to get_rtc_credentials
|
139 |
+
return HTMLResponse(content=html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config)))
|
140 |
+
|
141 |
+
@app.get("/transcript")
|
142 |
+
def _(webrtc_id: str):
|
143 |
+
logger.debug(f"New transcript stream request for webrtc_id: {webrtc_id}")
|
144 |
+
async def output_stream():
|
145 |
+
try:
|
146 |
+
async for output in stream.output_stream(webrtc_id):
|
147 |
+
transcript = output.args[0]
|
148 |
+
logger.debug(f"Sending transcript for {webrtc_id}: {transcript[:50]}...")
|
149 |
+
yield f"event: output\ndata: {transcript}\n\n"
|
150 |
+
except Exception as e:
|
151 |
+
logger.error(f"Error in transcript stream for {webrtc_id}: {str(e)}")
|
152 |
+
raise
|
153 |
+
|
154 |
+
return StreamingResponse(output_stream(), media_type="text/event-stream")
|