Spaces:
Running
Running
| # Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py | |
| # TODO: rebase on diffusers/pipelines/animatediff/pipeline_animatediff.py | |
| import copy | |
| from dataclasses import dataclass | |
| from typing import Callable, Optional, Dict, Any | |
| from typing import List, Union | |
| import PIL.Image | |
| import numpy as np | |
| import torch | |
| from diffusers import AnimateDiffPipeline | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.models import AutoencoderKL | |
| from diffusers.pipelines.animatediff import AnimateDiffPipelineOutput | |
| from diffusers.pipelines.animatediff.pipeline_animatediff import EXAMPLE_DOC_STRING | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils import deprecate, logging, replace_example_docstring | |
| from einops import rearrange | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from onlyflow.models.flow_adaptor import FlowEncoder | |
| from onlyflow.models.unet import UNetMotionModel | |
| logger = logging.get_logger(__name__) | |
| class AnimateDiffPipelineOutput(BaseOutput): | |
| frames_no_flow: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] | |
| frames_flow: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] | |
| class FlowCtrlPipeline(AnimateDiffPipeline, DiffusionPipeline): | |
| _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"] | |
| def __init__(self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNetMotionModel, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler], | |
| flow_encoder: FlowEncoder, | |
| feature_extractor=None, | |
| image_encoder=None, | |
| motion_adapter=None, | |
| ): | |
| super().__init__( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| motion_adapter=motion_adapter, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| # deepcopy the scheduler | |
| self.scheduler_no_flow = copy.deepcopy(scheduler) | |
| self.unet = unet | |
| self.register_modules( | |
| flow_encoder=flow_encoder | |
| ) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| flow_embedding: torch.FloatTensor = None, | |
| num_frames: Optional[int] = 16, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| output_type: Optional[str] = "pt", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| motion_cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| clip_skip: Optional[int] = None, | |
| decode_chunk_size: int = 16, | |
| val_scale_factor_spatial: float = 1., | |
| val_scale_factor_temporal: float = 1., | |
| generate_no_flow: bool = False, | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated video. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated video. | |
| num_frames (`int`, *optional*, defaults to 16): | |
| The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
| amounts to 2 seconds of video. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | |
| `(batch_size, num_channel, num_frames, height, width)`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): | |
| Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
| contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead | |
| of a plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| decode_chunk_size (`int`, defaults to `16`): | |
| The number of frames to decode at a time when calling `decode_latents` method. | |
| Examples: | |
| Returns: | |
| [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is | |
| returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| num_videos_per_prompt = 1 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self.unet.device | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_videos_per_prompt, | |
| self.do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_videos_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 4. Prepare timesteps | |
| single_model_length = num_frames | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| num_channels_latents, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if generate_no_flow: | |
| latents_no_flow = latents.clone() | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| if isinstance(flow_embedding, list): | |
| assert all([x.ndim == 5 for x in flow_embedding]) | |
| bs = flow_embedding[0].shape[0] | |
| flow_embedding_features = [] | |
| for pe in flow_embedding: | |
| flow_embedding_feature = self.flow_encoder(pe) | |
| flow_embedding_feature = [rearrange(x, '(b f) c h w -> b c f h w', b=bs) for x in | |
| flow_embedding_feature] | |
| flow_embedding_features.append(flow_embedding_feature) | |
| else: | |
| bs = flow_embedding.shape[0] | |
| assert flow_embedding.ndim == 5 | |
| flow_embedding_features = self.flow_encoder(flow_embedding) # bf, c, h, w | |
| flow_embedding_features = [rearrange(x, '(b f) c h w -> b c f h w', b=bs) | |
| for x in flow_embedding_features] | |
| # 7. Add image embeds for IP-Adapter | |
| added_cond_kwargs = { | |
| "image_embeds": image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None | |
| num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 | |
| for free_init_iter in range(num_free_init_iters): | |
| if self.free_init_enabled: | |
| latents, timesteps = self._apply_free_init( | |
| latents, free_init_iter, num_inference_steps, device, latents.dtype, generator | |
| ) | |
| if generate_no_flow: | |
| latents_no_flow = latents.clone() | |
| self._num_timesteps = len(timesteps) | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| if isinstance(flow_embedding_features[0], list): | |
| flow_embedding_features = [[torch.cat([x, x], dim=0) for x in flow_embedding_feature] | |
| for flow_embedding_feature in flow_embedding_features] \ | |
| if self.do_classifier_free_guidance else flow_embedding_features | |
| else: | |
| flow_embedding_features = [torch.cat([x, x], dim=0) for x in flow_embedding_features] \ | |
| if self.do_classifier_free_guidance else flow_embedding_features # [2b c f h w] | |
| # 8. Denoising loop | |
| with self.progress_bar(total=self._num_timesteps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| if added_cond_kwargs is not None: | |
| added_cond_kwargs.update({"flow_embedding_features": flow_embedding_features}) | |
| else: | |
| added_cond_kwargs = {"flow_embedding_features": flow_embedding_features} | |
| if cross_attention_kwargs is not None: | |
| cross_attention_kwargs.update({"flow_scale": val_scale_factor_spatial}) | |
| else: | |
| cross_attention_kwargs = {"flow_scale": val_scale_factor_spatial} | |
| if motion_cross_attention_kwargs is not None: | |
| motion_cross_attention_kwargs.update({"flow_scale": val_scale_factor_temporal}) | |
| else: | |
| motion_cross_attention_kwargs = {"flow_scale": val_scale_factor_temporal} | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| motion_cross_attention_kwargs=motion_cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| del latent_model_input | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| del noise_pred_uncond, noise_pred_text | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| del noise_pred | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 8. Denoising loop | |
| if generate_no_flow: | |
| with self.progress_bar(total=self._num_timesteps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input_no_flow = torch.cat( | |
| [latents_no_flow] * 2) if self.do_classifier_free_guidance else latents_no_flow | |
| latent_model_input_no_flow = self.scheduler.scale_model_input(latent_model_input_no_flow, t) | |
| if added_cond_kwargs is not None: | |
| added_cond_kwargs.update({"flow_embedding_features": flow_embedding_features}) | |
| else: | |
| added_cond_kwargs = {"flow_embedding_features": flow_embedding_features} | |
| if cross_attention_kwargs is not None: | |
| cross_attention_kwargs.update({"flow_scale": 0.}) | |
| else: | |
| cross_attention_kwargs = {"flow_scale": 0.} | |
| if motion_cross_attention_kwargs is not None: | |
| motion_cross_attention_kwargs.update({"flow_scale": 0.}) | |
| else: | |
| motion_cross_attention_kwargs = {"flow_scale": 0.} | |
| noise_pred_no_flow = self.unet( | |
| latent_model_input_no_flow, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| motion_cross_attention_kwargs=motion_cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| del latent_model_input_no_flow | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_no_flow_uncond, noise_pred_no_flow_text = noise_pred_no_flow.chunk(2) | |
| noise_pred_no_flow = noise_pred_no_flow_uncond + guidance_scale * ( | |
| noise_pred_no_flow_text - noise_pred_no_flow_uncond) | |
| del noise_pred_no_flow_uncond, noise_pred_no_flow_text | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_no_flow = self.scheduler.step(noise_pred_no_flow, t, latents_no_flow, | |
| **extra_step_kwargs).prev_sample | |
| del noise_pred_no_flow | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", | |
| negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 9. Post processing | |
| if output_type == "latent": | |
| video = latents | |
| if generate_no_flow: | |
| video_no_flow = latents_no_flow | |
| else: | |
| video_tensor = self.decode_latents(latents, decode_chunk_size) | |
| video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) | |
| if generate_no_flow: | |
| video_tensor_no_flow = self.decode_latents(latents_no_flow, decode_chunk_size) | |
| video_no_flow = self.video_processor.postprocess_video(video=video_tensor_no_flow, | |
| output_type=output_type) | |
| # 10. Offload all models | |
| self.maybe_free_model_hooks() | |
| video_no_flow = None if not generate_no_flow else video_no_flow | |
| if not return_dict: | |
| return (video, video_no_flow) | |
| return AnimateDiffPipelineOutput(frames_flow=video, frames_no_flow=video_no_flow) | |