import gradio as gr from sentence_transformers import SentenceTransformer model_name = "BAAI/bge-large-zh-v1.5" model = SentenceTransformer(model_name, device="cpu") def cal_sim(*args): intent = args[0] cand_list = args[1:] cand_list = [cand for cand in cand_list if cand] sim_output = {} if not cand_list: return sim_output embeddings_1 = model.encode([intent], normalize_embeddings=True) embeddings_2 = model.encode(cand_list, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T similarity = similarity[0] for i, sim in zip(cand_list, similarity): if i: sim_output[i] = float(sim) return sim_output with gr.Blocks(title="意圖相似度計算") as demo: gr.Markdown( """ 按 Calculate 計算 user query與 candidate list之間的相似度。 """ ) # Row 1: Buttons with gr.Row(): submit_button = gr.Button("Calculate") clear_button = gr.Button("Clear") # Row 2: Inputs and Output Side by Side with gr.Row(): # Left column: User input and candidates with gr.Column(): user_query = gr.Textbox(label="User Query") candidate_boxes = [gr.Textbox(label=f"Candidate {i+1}") for i in range(30)] # Right column: Output label with gr.Column(): output_label = gr.Label(label="Similarity Results") # Link buttons to functions inputs = [user_query] + candidate_boxes submit_button.click(fn=cal_sim, inputs=inputs, outputs=output_label) clear_button.click(lambda: (None,) * 31, inputs=[], outputs=inputs) # Launch the app if __name__ == "__main__": demo.launch(share=True, debug=True)