File size: 16,167 Bytes
3d6ba31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import networkx as nx
import numpy as np
from Bio.Phylo import to_networkx
from networkx.drawing.nx_agraph import graphviz_layout
import plotly.graph_objects as go
import plotly.express as px
from Bio.Phylo.TreeConstruction import DistanceTreeConstructor, DistanceCalculator, _DistanceMatrix

from tools import compute_ordered_matrix,compute_umap
from phylogeny import prepare_tree
from constants import UNKNOWN_COLOR, DEFAULT_COLOR, UNKNOWN_COLOR_RGB, DEFAULT_COLOR_RGB

# ------------------------------------------------------------------------------------------------
#
#                                     Sim Matrix Plotting
#
# ------------------------------------------------------------------------------------------------

def plot_sim_matrix_fig(ordered_sim_matrix,ordered_model_names,families,colors):
    fig = px.imshow(
        ordered_sim_matrix, 
        x=ordered_model_names, 
        y=ordered_model_names, 
        zmin=0, zmax=1, 
        color_continuous_scale='gray',
    )
    
    fig.update_layout(coloraxis_colorbar=dict(title='Similarity'),
        margin=dict(l=0, r=0, t=0, b=0),
        autosize=True,
    )

    fig.update_traces(
        colorbar=dict(
            thickness=20,
            len=0.75,
            xanchor="right", 
            x=1.02
        )
    )

    fig.update_xaxes(showticklabels=False, showgrid=False, zeroline=False,constrain='range')
    fig.update_yaxes(showticklabels=False, showgrid=False, zeroline=False,constrain='range')

    #Create rectangles for highlighted models
    rectX = go.layout.Shape(
            type="rect",
            xref="x", yref="y",
            x0=0, y0=0,
            x1=0, y1=0,
            line=dict(color="red", width=1),
            fillcolor="rgba(0,0,0,0)",
            name='rectX',
            opacity=0,
        )
    fig.add_shape(rectX)
    rectY = go.layout.Shape(
            type="rect",
            xref="x", yref="y",
            x0=0, y0=0,
            x1=0, y1=0,
            line=dict(color="red", width=1),
            fillcolor="rgba(0,0,0,0)",
            name='rectY',
            opacity=0,
        )
    fig.add_shape(rectY)

    return fig

def update_sim_matrix_fig(fig, ordered_model_names, model_search_x=None, model_search_y=None):
    if model_search_x in ordered_model_names:
        idx_x = ordered_model_names.index(model_search_x)
        fig.update_shapes(
            selector=dict(name='rectX'),
                x0=idx_x-0.5, y0=-0.5,
                x1=idx_x+0.5, y1=len(ordered_model_names)-0.5,
                opacity=0.7,
            )
    else:
        fig.update_shapes(
            selector=dict(name='rectX'),
                opacity=0
        )
    if model_search_y in ordered_model_names:
        idx_y = ordered_model_names.index(model_search_y)
        fig.update_shapes(
            selector=dict(name='rectY'),
                x0=-0.5, y0=idx_y-0.5,
                x1=len(ordered_model_names)-0.5, y1=idx_y+0.5,
                opacity=0.7,
            )
    else:
        fig.update_shapes(
            selector=dict(name='rectY'),
                opacity=0
        )
    return fig

# ------------------------------------------------------------------------------------------------
#
#                                     2D UMAP Plotting
#
# ------------------------------------------------------------------------------------------------

def alpha_scaling(val):
    base = 0.35
    return val**(1/(base+1/100))

def plot_umap_fig(dist_matrix, sim_matrix, model_names, families, colors,key='fig2',alpha_edges=None, alpha_names=None, alpha_markers=None):
    embedding = compute_umap(dist_matrix,d=2)

    fig = go.Figure()

    #-- EDGES
    # Calculate edge transparencies based on similarity
    edges = []
    for i in range(len(model_names)):
        for j in range(i+1, len(model_names)):  # Only process each pair once (i,j where i<j)
            val = alpha_scaling(sim_matrix[i][j])
            if val > 0.1:
                edges.append((i, j, val, colors[families[i]]))
    
    # Add all edges at once
    for i, j, val, color in edges:
        fig.add_trace(
            go.Scatter(
                x=[embedding[i,0], embedding[j,0]],
                y=[embedding[i,1], embedding[j,1]],
                mode='lines',
                name='_edge',
                line=dict(color=color, width=val),
                opacity=alpha_edges,
                showlegend=False,
                hoverinfo='skip',
            )
        )

    #-- NODES
    marker_colors = [colors[f] for f in families]
    fig.add_trace(
        go.Scatter(
            x=embedding[:,0],
            y=embedding[:,1],
            text=model_names,
            mode='markers+text',
            textposition='top center',
            hoverinfo='text',
            hoveron='points+fills',
            showlegend=False,
            name='_node',
            marker=dict(
                color=marker_colors,
                size=8,
                line_width=2,
                opacity=alpha_markers,
            ),
            textfont=dict(
                color=f'rgba(0,0,0,{alpha_names})',
                size=8,
                family="Arial Black",
            )
        )
    )

    #-- LEGEND
    legends = []
    for f in set(families):
        legends.append(
            go.Scatter(
                x=[None],
                y=[None],
                mode='markers',
                marker=dict(
                    color=colors[f],
                    size=8,
                    line_width=2,
                    opacity=1
                ),
                name=f,
                
            )
        )
    fig.add_traces(legends)

    #Add highlighted node
    node = go.Scatter(
        x=[0],
        y=[0],
        mode='markers+text',
        textposition='top center',
        textfont=dict(color='red', size=16, family="Arial Black"),
        marker=dict(
            color='red',
            size=12,
            symbol='circle',
            line=dict(color='red', width=3)
        ),
        showlegend=False,
        name='node',
        opacity=0,
    )
    fig.add_trace(node)

    #Setup the layout
    fig.update_layout(
        margin=dict(l=0, r=0, t=0, b=0),
        autosize=True,
    )

    fig.update_xaxes(showticklabels=False, showgrid=False, zeroline=False,constrain='range')
    fig.update_yaxes(showticklabels=False, showgrid=False, zeroline=False,constrain='range')

    return fig

def update_umap_fig(fig, dist_matrix, model_names, families, colors, model_search_x=None, alpha_names=None, alpha_markers=None, alpha_edges=None, key='fig2'):
    #Update nodes
    fig.update_traces(
        selector=dict(name='_node'),
        textfont=dict(
            color=f'rgba(0,0,0,{alpha_names})',
        ),
        marker=dict(
            opacity=alpha_markers
        ),
    )

    #Update edges
    fig.update_traces(
        selector=dict(mode='lines'),
        line=dict(width=1),
        opacity=alpha_edges
    )

    #Update highlighted node
    if model_search_x in model_names:
        searched_idx = model_names.index(model_search_x)
        embedding = compute_umap(dist_matrix,d=2) #Cached computation
        fig.update_traces(
            selector=dict(name='node'),
            x=[embedding[searched_idx,0]],
            y=[embedding[searched_idx,1]],
            text=[model_search_x],
            marker=dict(
                color=colors[families[searched_idx]],
            ),
            hovertext=model_search_x,
            opacity=1
        )
    else:
        fig.update_traces(
            selector=dict(name='node'),
            x=[0],
            y=[0],
            text=[''],
            opacity=0
        )
    return fig

# ------------------------------------------------------------------------------------------------
#
#                                     Phylogenetic Tree Plotting
#
# ------------------------------------------------------------------------------------------------

def draw_graphviz(tree, label_func=str, prog='twopi', args='',
                 node_size=15, edge_width=0.0, alpha_edges=None, alpha_names=None,alpha_markers=None, **kwargs):
    #Display a tree or clade as a graph using Plotly, with layout from the graphviz engine.

    global UNKNOWN_COLOR, DEFAULT_COLOR
    # Convert the Bio.Phylo tree to a NetworkX graph
    G = to_networkx(tree)
    
    # Relabel nodes using integers while keeping original labels
    Gi = nx.convert_node_labels_to_integers(G, label_attribute='label')
    
    # Apply the Graphviz layout
    pos = graphviz_layout(Gi, prog=prog, args=args)
    
    # Prepare node labels for display
    def get_label_mapping(G, selection):
        for node, data in G.nodes(data=True):
            if (selection is None) or (node in selection):
                try:
                    label = label_func(data.get('label', node))
                    if label not in (None, node.__class__.__name__):
                        yield (node, label)
                except (LookupError, AttributeError, ValueError):
                    pass
    
    # Extract labels
    labels = dict(get_label_mapping(Gi, None))
    nodelist = list(labels.keys())
    
    # Collect node colors and create edge traces
    edge_traces = []
    node_traces_by_family = {}
    node_colors = {}
    node_families = {}
    
    # Track if we find the searched model and its position
    searched_model_node = None
    searched_model_pos = None

    default_color = (0,0,0)
    
    # Get colors and families for all nodes
    for node in Gi.nodes():
        node_data = Gi.nodes[node].get('label')
        if hasattr(node_data, 'color'):
            node_colors[node] = node_data.color.to_rgb() if not(node_data.color is None) else default_color
        else:
            node_colors[node] = default_color
        node_colors[node] = f'rgb({node_colors[node][0]},{node_colors[node][1]},{node_colors[node][2]})'
            
        if hasattr(node_data, 'family'):
            node_families[node] = node_data.family
        else:
            node_families[node] = None
            
    # Create edge traces
    for edge in Gi.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        
        # Use the child node's color for the edge if available
        edge_color = node_colors[edge[1]]
        if list(edge_color) == list(UNKNOWN_COLOR_RGB): # Use the parent node's color for edge's color except if it's an unknown nodes
            edge_color = tuple(DEFAULT_COLOR_RGB)
        #edge_color = f'rgb({edge_color[0]},{edge_color[1]},{edge_color[2]})'
        edge_trace = go.Scatter(
            x=[x0, x1, None],
            y=[y0, y1, None],
            line=dict(width=edge_width, color=edge_color),
            hoverinfo='none',
            mode='lines',
            showlegend=False,
            name='_edge',
            opacity=alpha_edges,
        )
        edge_traces.append(edge_trace)

    # Create node traces
    node_traces = []
    for node in nodelist:
        x,y = pos[node]
        text = labels.get(node, None)
        color = node_colors.get(node, None)
        node_trace = go.Scatter(
            x=[x],
            y=[y],
            text=text,
            mode='markers+text',
            textposition='top center',
            hoverinfo='text',
            showlegend=False,
            name='_node',
            marker=dict(
                color=color,
                size=node_size,
                line_width=2,
                opacity=alpha_markers,
            ),
            textfont=dict(
                color=f'rgba(0,0,0,{alpha_names})',
                size=8,
                family="Arial Black",
            )
        )
        node_traces.append(node_trace)

    # Get color dict
    colors = {}
    families = []
    for node in node_families.keys():
        family = node_families[node]
        if family is not None:
            families.append(family)
            colors[family] = node_colors.get(node, DEFAULT_COLOR)
        else:
            colors[family] = DEFAULT_COLOR

    families = set(families)

    #Custom legend
    legends = []
    for f in families:
        legends.append(
            go.Scatter(
                x=[None],
                y=[None],
                mode='markers',
                marker=dict(
                    color=colors[f],
                    size=8,
                    line_width=2,
                    opacity=1
                ),
                name=f,
                
            )
        )
    
    # Create the figure
    fig = go.Figure(
        data=edge_traces + node_traces,
        layout=go.Layout(
            showlegend=True,
            hovermode='closest',
            margin=dict(b=1, l=1, r=1, t=1),
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            legend=dict(
                yanchor="top",
                y=0.99,
                xanchor="right",
                x=0.99
            )
        )
    )

    fig.add_traces(legends)

    return fig

def get_color(index):
    """Get a color from plotly's qualitative color palette."""
    colors = px.colors.qualitative.Plotly
    return colors[index % len(colors)]

def plot_tree(sim_matrix, models, families,colors, alpha_names=None, alpha_markers=None, alpha_edges=None):
    """
    Plot a phylogenetic tree based on a similarity matrix.
    
    Parameters:
    - sim_matrix: similarity matrix between models
    - models: list of model names
    - families: list of family names for each model
    
    Returns:
    - fig: Plotly figure object with the phylogenetic tree
    """
    # Create color mapping for families

    # Prepare the distance matrix
    dist_matrix = -np.log(np.maximum(sim_matrix, 1e-10))  # Avoid log(0)

    # Prepare the data for Bio.Phylo
    low_triangle_kl_mean = [[dist_matrix[i][j] for j in range(i+1)] for i in range(len(dist_matrix))]
    df = _DistanceMatrix(names=models, matrix=low_triangle_kl_mean)

    # Setup Bio.Phylo
    calculator = DistanceCalculator('identity')
    constructor = DistanceTreeConstructor(calculator, 'nj')

    # Build the tree
    NJTree = constructor.nj(df)
    NJTree.ladderize(reverse=False)

    # Color the tree
    prepare_tree(NJTree, models, families, colors)

    # Generate the plotly figure
    fig = draw_graphviz(NJTree, node_size=15, edge_width=6,alpha_names=alpha_names, alpha_markers=alpha_markers, alpha_edges=alpha_edges)

    return fig

def update_tree_fig(fig, model_names, model_search=None,alpha_names=None, alpha_markers=None, alpha_edges=None):
    #Update nodes
    fig.update_traces(
        selector=dict(name='_node'),
        marker=dict(
            opacity=alpha_markers,
        ),
        textfont=dict(
            color=f'rgba(0,0,0,{alpha_names})',
        )
    )
    
    # Update edges
    fig.update_traces(
        selector=dict(name='_edge'),
        opacity=alpha_edges,
    )

    for d in fig.data:
        if d.name in ['_node','node']:
            if d.text == 'mistralai/Mistral-7B-Instruct-v0.1':
                print(d)

    # Update highlighted node
    fig.update_traces(
            selector=dict(name='node'),
            marker=dict(
                size=15,  # Bigger than normal nodes
                line=None  # Red border
            ),
            textfont=dict(
                color=f'rgba(0,0,0,{alpha_names})', size=16, family="Arial Black",
            ),
            name='_node'
        )
    if model_search in model_names:
        fig.update_traces(
            selector=dict(name='_node',text=model_search),
            marker=dict(
                size=22,  # Bigger than normal nodes
                line=dict(color='red', width=4)  # Red border
            ),
            textfont=dict(
                color='red', size=16, family="Arial Black",
            ),
            name='node'
        )
        for d in fig.data:
            if d.name in ['_node','node']:
                if d.text == 'mistralai/Mistral-7B-Instruct-v0.1':
                    print(d)
    else:
        pass

    return fig