Spaces:
Runtime error
Runtime error
ngxquang
commited on
Commit
·
68cd8f8
1
Parent(s):
3821a34
beit3 both keyframes and subframes
Browse files- .env +12 -0
- .gitattributes +2 -0
- Dockerfile +39 -0
- data/config/keyframes_groups_L01_to_L36.json +3 -0
- data/config/subframes_groups_L01_to_L36.json +3 -0
- data/faiss-index/index_beit3_L01_to_L36.faiss +3 -0
- data/faiss-index/index_beit3_subframes_L01_to_L36.faiss +3 -0
- download_models.sh +5 -0
- requirements.dev.txt +21 -0
- requirements.txt +18 -0
- src/__init__.py +0 -0
- src/__pycache__/config.cpython-311.pyc +0 -0
- src/__pycache__/main.cpython-311.pyc +0 -0
- src/config.py +30 -0
- src/itr/__init__.py +0 -0
- src/itr/beit3/README.md +28 -0
- src/itr/beit3_model.py +109 -0
- src/itr/beit3_model/README.md +6 -0
- src/itr/dtb_cursor.py +56 -0
- src/itr/modeling_finetune.py +388 -0
- src/itr/modeling_utils.py +108 -0
- src/itr/router.py +49 -0
- src/itr/utils.py +891 -0
- src/itr/vlm_model.py +31 -0
- src/main.py +71 -0
.env
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PROJECT INFORMATION
|
| 2 |
+
HOST=0.0.0.0
|
| 3 |
+
PORT=7860
|
| 4 |
+
CORS_HEADERS=["*"]
|
| 5 |
+
CORS_ORIGINS=["*"]
|
| 6 |
+
|
| 7 |
+
DEVICE="cpu" # ["cuda", "cpu"]
|
| 8 |
+
|
| 9 |
+
INDEX_FILE_PATH="data/faiss-index/index_beit3_L01_to_L36.faiss"
|
| 10 |
+
INDEX_SUBFRAMES_FILE_PATH = "data/faiss-index/index_beit3_subframes_L01_to_L36.faiss"
|
| 11 |
+
KEYFRAMES_GROUPS_JSON_PATH="data/config/keyframes_groups_L01_to_L36.json"
|
| 12 |
+
SUBFRAMES_GROUPS_JSON_PATH="data/config/subframes_groups_L01_to_L36.json"
|
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.faiss filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.8-slim
|
| 2 |
+
|
| 3 |
+
RUN apt-get update && \
|
| 4 |
+
apt-get install git bash wget iputils-ping -y && \
|
| 5 |
+
apt clean && \
|
| 6 |
+
rm -rf /var/cache/apt/*
|
| 7 |
+
|
| 8 |
+
WORKDIR /code
|
| 9 |
+
|
| 10 |
+
COPY requirements.txt /code/requirements.txt
|
| 11 |
+
|
| 12 |
+
# PYTHONDONTWRITEBYTECODE=1: Disables the creation of .pyc files (compiled bytecode)
|
| 13 |
+
# PYTHONUNBUFFERED=1: Disables buffering of the standard output stream
|
| 14 |
+
# PYTHONIOENCODING: specifies the encoding to be used for the standard input, output, and error streams
|
| 15 |
+
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 16 |
+
PYTHONUNBUFFERED=1 \
|
| 17 |
+
PYTHONIOENCODING=utf-8
|
| 18 |
+
|
| 19 |
+
RUN pip install -U pip && \
|
| 20 |
+
python -m pip install -r /code/requirements.txt
|
| 21 |
+
|
| 22 |
+
RUN useradd -m -u 1000 user
|
| 23 |
+
|
| 24 |
+
USER user
|
| 25 |
+
|
| 26 |
+
ENV HOME=/home/user \
|
| 27 |
+
PATH=/home/user/.local/bin:$PATH
|
| 28 |
+
|
| 29 |
+
WORKDIR $HOME/app
|
| 30 |
+
|
| 31 |
+
COPY --chown=user . $HOME/app
|
| 32 |
+
|
| 33 |
+
# Download index
|
| 34 |
+
# RUN mkdir ./data/faiss-index/ && \
|
| 35 |
+
# gsutil cp "gs://thangtd1/faiss-index/index_beit3_L01_to_L20.faiss" ./data/faiss-index/
|
| 36 |
+
|
| 37 |
+
RUN bash $HOME/app/download_models.sh
|
| 38 |
+
|
| 39 |
+
CMD ["python", "./src/main.py"]
|
data/config/keyframes_groups_L01_to_L36.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a28d33542216ad24cb09db5f4fd1040c0c2045bcd42d8a4f5e1d038deac73db4
|
| 3 |
+
size 29038197
|
data/config/subframes_groups_L01_to_L36.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:980472aaad434482a2e89d5a8bc076a923b41c26437b597ceb6c7de34bc4f9c7
|
| 3 |
+
size 28967171
|
data/faiss-index/index_beit3_L01_to_L36.faiss
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:adeb2fae41eb76058f41a05334b317841a5dcca00ded4ba8bce4fb766830f311
|
| 3 |
+
size 1012494381
|
data/faiss-index/index_beit3_subframes_L01_to_L36.faiss
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f135772f7011a64df18f7687549dd5f7e11e0b73cbad840399b74b3acb073961
|
| 3 |
+
size 1007133741
|
download_models.sh
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Download processor and beit-3 model from provided urls
|
| 4 |
+
wget "https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D" -O ./src/itr/beit3_model/beit3.spm
|
| 5 |
+
wget "https://conversationhub.blob.core.windows.net/beit-share-public/beit3/f30k_retrieval/beit3_base_patch16_384_f30k_retrieval.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D" -O ./src/itr/beit3_model/beit3_base_patch16_384_f30k_retrieval.pth
|
requirements.dev.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.103.1
|
| 2 |
+
uvicorn==0.23.2
|
| 3 |
+
pydantic-settings==2.0.3
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Models
|
| 7 |
+
torch==2.0.0
|
| 8 |
+
torchvision==0.15.1
|
| 9 |
+
torchscale==0.2.0
|
| 10 |
+
ftfy==6.1.1
|
| 11 |
+
regex
|
| 12 |
+
tqdm==4.66.1
|
| 13 |
+
transformers==4.33.1
|
| 14 |
+
timm==0.4.12
|
| 15 |
+
sentencepiece==0.1.99
|
| 16 |
+
|
| 17 |
+
# Vector Database
|
| 18 |
+
faiss-cpu
|
| 19 |
+
|
| 20 |
+
# Project settings
|
| 21 |
+
pre-commit
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.103.1
|
| 2 |
+
uvicorn==0.23.2
|
| 3 |
+
pydantic-settings==2.0.3
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Models
|
| 7 |
+
torch==2.0.0
|
| 8 |
+
torchvision==0.15.1
|
| 9 |
+
torchscale==0.2.0
|
| 10 |
+
ftfy==6.1.1
|
| 11 |
+
regex
|
| 12 |
+
tqdm==4.66.1
|
| 13 |
+
transformers==4.33.1
|
| 14 |
+
timm==0.4.12
|
| 15 |
+
sentencepiece==0.1.99
|
| 16 |
+
|
| 17 |
+
# Vector Database
|
| 18 |
+
faiss-cpu
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/config.cpython-311.pyc
ADDED
|
Binary file (1.29 kB). View file
|
|
|
src/__pycache__/main.cpython-311.pyc
ADDED
|
Binary file (3.94 kB). View file
|
|
|
src/config.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
+
from pydantic_settings import BaseSettings
|
| 4 |
+
|
| 5 |
+
FILE = Path(__file__)
|
| 6 |
+
ROOT = FILE.parent.parent
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Settings(BaseSettings):
|
| 10 |
+
# API SETTINGS
|
| 11 |
+
HOST: str
|
| 12 |
+
PORT: int
|
| 13 |
+
CORS_ORIGINS: list
|
| 14 |
+
CORS_HEADERS: list
|
| 15 |
+
|
| 16 |
+
# MODEL SETTINGS
|
| 17 |
+
MODEL_NAME: str = "ViT-B/32"
|
| 18 |
+
DEVICE: str = "cpu"
|
| 19 |
+
|
| 20 |
+
# FAISS DATABASE SETTINGS
|
| 21 |
+
INDEX_FILE_PATH: str
|
| 22 |
+
INDEX_SUBFRAMES_FILE_PATH: str
|
| 23 |
+
KEYFRAMES_GROUPS_JSON_PATH: str
|
| 24 |
+
SUBFRAMES_GROUPS_JSON_PATH: str
|
| 25 |
+
|
| 26 |
+
class Config:
|
| 27 |
+
env_file = ROOT / ".env"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
settings = Settings()
|
src/itr/__init__.py
ADDED
|
File without changes
|
src/itr/beit3/README.md
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Using BEiT-3 to get text-vision embedding
|
| 2 |
+
|
| 3 |
+
## For text embedding
|
| 4 |
+
1. Create file ```test_model.py``` inside folder ```itr```.
|
| 5 |
+
2. Using the code follow:
|
| 6 |
+
```
|
| 7 |
+
from beit3_model import Beit3Model
|
| 8 |
+
|
| 9 |
+
if __name__ == '__main__':
|
| 10 |
+
vlm = Beit3Model(device='cpu')
|
| 11 |
+
|
| 12 |
+
print(vlm.get_embedding('A man who loves a girl.').shape)
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
## For image embedding
|
| 16 |
+
1. Create file ```test_model.py``` inside folder ```itr```.
|
| 17 |
+
2. Using the code follow:
|
| 18 |
+
```
|
| 19 |
+
from beit3_model import Beit3Model
|
| 20 |
+
from torchvision.datasets.folder import default_loader
|
| 21 |
+
|
| 22 |
+
if __name__ == '__main__':
|
| 23 |
+
loader = default_loader
|
| 24 |
+
image = loader('./path/to/your/image.jpg')
|
| 25 |
+
|
| 26 |
+
vlm = Beit3Model(device='cpu')
|
| 27 |
+
print(vlm.get_embedding(image).shape)
|
| 28 |
+
```
|
src/itr/beit3_model.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from functools import lru_cache
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Union
|
| 6 |
+
|
| 7 |
+
from . import modeling_finetune, utils
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
| 10 |
+
from timm.models import create_model
|
| 11 |
+
from torchvision import transforms
|
| 12 |
+
from transformers import XLMRobertaTokenizer
|
| 13 |
+
|
| 14 |
+
# Get current workdir of this file
|
| 15 |
+
CWD = Path(__file__).parent
|
| 16 |
+
print(CWD)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Preprocess:
|
| 20 |
+
def __init__(self, tokenizer):
|
| 21 |
+
self.max_len = 64
|
| 22 |
+
self.input_size = 384
|
| 23 |
+
|
| 24 |
+
self.tokenizer = tokenizer
|
| 25 |
+
self.transform = transforms.Compose(
|
| 26 |
+
[
|
| 27 |
+
transforms.Resize((self.input_size, self.input_size), interpolation=3),
|
| 28 |
+
transforms.ToTensor(),
|
| 29 |
+
transforms.Normalize(
|
| 30 |
+
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
|
| 31 |
+
),
|
| 32 |
+
]
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
self.bos_token_id = tokenizer.bos_token_id
|
| 36 |
+
self.eos_token_id = tokenizer.eos_token_id
|
| 37 |
+
self.pad_token_id = tokenizer.pad_token_id
|
| 38 |
+
|
| 39 |
+
def preprocess(self, input: Union[str, Image.Image]):
|
| 40 |
+
if isinstance(input, str):
|
| 41 |
+
tokens = self.tokenizer.tokenize(input)
|
| 42 |
+
tokens = self.tokenizer.convert_tokens_to_ids(tokens)
|
| 43 |
+
|
| 44 |
+
tokens = [self.bos_token_id] + tokens[:] + [self.eos_token_id]
|
| 45 |
+
num_tokens = len(tokens)
|
| 46 |
+
padding_mask = [0] * num_tokens + [1] * (self.max_len - num_tokens)
|
| 47 |
+
|
| 48 |
+
return (
|
| 49 |
+
torch.LongTensor(
|
| 50 |
+
tokens + [self.pad_token_id] * (self.max_len - num_tokens)
|
| 51 |
+
).unsqueeze(0),
|
| 52 |
+
torch.Tensor(padding_mask).unsqueeze(0),
|
| 53 |
+
num_tokens,
|
| 54 |
+
)
|
| 55 |
+
elif isinstance(input, Image.Image):
|
| 56 |
+
return self.transform(input).unsqueeze(0)
|
| 57 |
+
else:
|
| 58 |
+
raise Exception("Invalid input type")
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class Beit3Model:
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
model_name: str = "beit3_base_patch16_384_retrieval",
|
| 65 |
+
model_path: str = os.path.join(
|
| 66 |
+
CWD,
|
| 67 |
+
"beit3_model/beit3_base_patch16_384_f30k_retrieval.pth",
|
| 68 |
+
),
|
| 69 |
+
device: str = "cuda",
|
| 70 |
+
):
|
| 71 |
+
self._load_model(model_name, model_path, device)
|
| 72 |
+
self.device = device
|
| 73 |
+
|
| 74 |
+
# @lru_cache(maxsize=1)
|
| 75 |
+
def _load_model(self, model_name, model_path, device: str = "cpu"):
|
| 76 |
+
self.model = create_model(
|
| 77 |
+
model_name,
|
| 78 |
+
pretrained=False,
|
| 79 |
+
drop_path_rate=0.1,
|
| 80 |
+
vocab_size=64010,
|
| 81 |
+
checkpoint_activations=False,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
if model_name:
|
| 85 |
+
utils.load_model_and_may_interpolate(
|
| 86 |
+
model_path, self.model, "model|module", ""
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
self.preprocessor = Preprocess(
|
| 90 |
+
XLMRobertaTokenizer(os.path.join(CWD, "beit3_model/beit3.spm"))
|
| 91 |
+
)
|
| 92 |
+
self.model.to(device)
|
| 93 |
+
|
| 94 |
+
def get_embedding(self, input: Union[str, Image.Image]):
|
| 95 |
+
if isinstance(input, str):
|
| 96 |
+
token_ids, padding_mask, _ = self.preprocessor.preprocess(input)
|
| 97 |
+
|
| 98 |
+
_, vector = self.model(
|
| 99 |
+
text_description=token_ids, padding_mask=padding_mask, only_infer=True
|
| 100 |
+
)
|
| 101 |
+
vector = vector.cpu().detach().numpy().astype("float32")
|
| 102 |
+
return vector
|
| 103 |
+
elif isinstance(input, Image.Image):
|
| 104 |
+
image_input = self.preprocessor.preprocess(input)
|
| 105 |
+
image_input = image_input.to(self.device)
|
| 106 |
+
vector, _ = self.model(image=image_input, only_infer=True)
|
| 107 |
+
return vector
|
| 108 |
+
else:
|
| 109 |
+
raise Exception("Invalid input type")
|
src/itr/beit3_model/README.md
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# BEiT-3 Weight and Sentencepiece models
|
| 2 |
+
|
| 3 |
+
1. Please download [beit3_base_patch16_384_retrieval.pth](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/f30k_retrieval/beit3_base_patch16_384_f30k_retrieval.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) and [beit3.spm](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) model.
|
| 4 |
+
|
| 5 |
+
2. Put those 2 model inside this folder
|
| 6 |
+
|
src/itr/dtb_cursor.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import faiss
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class DatabaseCursor:
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
index_file_path: str,
|
| 13 |
+
index_subframes_file_path: str,
|
| 14 |
+
keyframes_groups_json_path: str,
|
| 15 |
+
subframes_groups_json_path: str,
|
| 16 |
+
):
|
| 17 |
+
self._load_index(index_file_path, index_subframes_file_path)
|
| 18 |
+
self._load_keyframes_groups_info(
|
| 19 |
+
keyframes_groups_json_path, subframes_groups_json_path
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
@lru_cache(maxsize=1)
|
| 23 |
+
def _load_index(self, index_file_path, index_subframes_file_path):
|
| 24 |
+
self.index = faiss.read_index(index_file_path)
|
| 25 |
+
index_subframes = faiss.read_index(index_subframes_file_path)
|
| 26 |
+
try:
|
| 27 |
+
self.index.merge_from(index_subframes)
|
| 28 |
+
except:
|
| 29 |
+
raise Exception("dtb_cursos::cannot merge keyframes and subframes index")
|
| 30 |
+
|
| 31 |
+
@lru_cache(maxsize=1)
|
| 32 |
+
def _load_keyframes_groups_info(
|
| 33 |
+
self, keyframes_groups_json_path: str, subframes_groups_json_path: str
|
| 34 |
+
):
|
| 35 |
+
with open(keyframes_groups_json_path) as file:
|
| 36 |
+
keyframes_group_info = json.loads(file.read())
|
| 37 |
+
with open(subframes_groups_json_path) as file:
|
| 38 |
+
subframes_groups_info = json.load(file.read())
|
| 39 |
+
self.frames_groups_info = {
|
| 40 |
+
key: value
|
| 41 |
+
for (key, value) in (
|
| 42 |
+
keyframes_group_info.items() + subframes_groups_info.items()
|
| 43 |
+
)
|
| 44 |
+
}
|
| 45 |
+
assert self.index.ntotal == len(
|
| 46 |
+
self.frames_groups_info.items()
|
| 47 |
+
), "dtb_cursos::Index length and map lenght mismatch"
|
| 48 |
+
|
| 49 |
+
def kNN_search(self, query_vector: str, topk: int = 10):
|
| 50 |
+
results = []
|
| 51 |
+
distances, ids = self.index.search(query_vector, topk)
|
| 52 |
+
for i in range(len(ids[0])):
|
| 53 |
+
frame_detail = self.frames_groups_info[ids[0][i]]
|
| 54 |
+
frame_detail["distance"] = str(distances[0][i])
|
| 55 |
+
results.append(frame_detail)
|
| 56 |
+
return results
|
src/itr/modeling_finetune.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
|
| 4 |
+
# Copyright (c) 2023 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# --------------------------------------------------------'
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from . import utils
|
| 13 |
+
from .modeling_utils import BEiT3Wrapper, _get_base_config, _get_large_config
|
| 14 |
+
from timm.models.registry import register_model
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class TwoLayerMLP(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
in_features,
|
| 21 |
+
hidden_features,
|
| 22 |
+
out_features,
|
| 23 |
+
norm_layer,
|
| 24 |
+
norm_input=True,
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.norm1 = norm_layer(in_features) if norm_input else nn.Identity()
|
| 28 |
+
self.dense1 = nn.Linear(in_features, hidden_features)
|
| 29 |
+
self.norm2 = norm_layer(hidden_features)
|
| 30 |
+
self.act = nn.GELU()
|
| 31 |
+
self.dense2 = nn.Linear(hidden_features, out_features)
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
x = self.norm1(x)
|
| 35 |
+
x = self.dense1(x)
|
| 36 |
+
x = self.norm2(x)
|
| 37 |
+
x = self.act(x)
|
| 38 |
+
return self.dense2(x)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class Pooler(nn.Module):
|
| 42 |
+
def __init__(self, input_features, output_features, norm_layer):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.norm = norm_layer(input_features)
|
| 45 |
+
self.dense = nn.Linear(input_features, output_features)
|
| 46 |
+
self.activation = nn.Tanh()
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
cls_rep = x[:, 0, :]
|
| 50 |
+
cls_rep = self.norm(cls_rep)
|
| 51 |
+
pooled_output = self.dense(cls_rep)
|
| 52 |
+
pooled_output = self.activation(pooled_output)
|
| 53 |
+
return pooled_output
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class BEiT3ForVisualReasoning(BEiT3Wrapper):
|
| 57 |
+
def __init__(self, args, num_classes, norm_layer=nn.LayerNorm, **kwargs):
|
| 58 |
+
super().__init__(args=args)
|
| 59 |
+
embed_dim = args.encoder_embed_dim
|
| 60 |
+
self.head = TwoLayerMLP(
|
| 61 |
+
in_features=embed_dim * 4,
|
| 62 |
+
hidden_features=embed_dim * 2,
|
| 63 |
+
out_features=num_classes,
|
| 64 |
+
norm_layer=norm_layer,
|
| 65 |
+
)
|
| 66 |
+
init_scale = 0.001
|
| 67 |
+
self.head.apply(self._init_weights)
|
| 68 |
+
if isinstance(self.head.dense1, nn.Linear):
|
| 69 |
+
self.head.dense1.weight.data.mul_(init_scale)
|
| 70 |
+
self.head.dense1.bias.data.mul_(init_scale)
|
| 71 |
+
|
| 72 |
+
if isinstance(self.head.dense2, nn.Linear):
|
| 73 |
+
self.head.dense2.weight.data.mul_(init_scale)
|
| 74 |
+
self.head.dense2.bias.data.mul_(init_scale)
|
| 75 |
+
|
| 76 |
+
def forward(self, image_a, image_b, text_description, padding_mask, **kwargs):
|
| 77 |
+
bsz, _ = text_description.size()
|
| 78 |
+
|
| 79 |
+
vision_input = torch.cat((image_a, image_b), dim=0)
|
| 80 |
+
language_input = torch.cat((text_description, text_description), dim=0)
|
| 81 |
+
padding_mask = torch.cat((padding_mask, padding_mask), dim=0)
|
| 82 |
+
|
| 83 |
+
outputs = self.beit3(
|
| 84 |
+
textual_tokens=language_input,
|
| 85 |
+
visual_tokens=vision_input,
|
| 86 |
+
text_padding_position=padding_mask,
|
| 87 |
+
)
|
| 88 |
+
x = outputs["encoder_out"]
|
| 89 |
+
multiway_split_position = outputs["multiway_split_position"]
|
| 90 |
+
|
| 91 |
+
vision_cls = x[:, 0, :]
|
| 92 |
+
language_cls = x[:, multiway_split_position, :]
|
| 93 |
+
cls_rep = torch.cat((vision_cls, language_cls), dim=-1)
|
| 94 |
+
a, b = torch.split(cls_rep, split_size_or_sections=[bsz, bsz], dim=0)
|
| 95 |
+
cls_rep = torch.cat((a, b), dim=-1)
|
| 96 |
+
return self.head(cls_rep)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class BEiT3ForImageClassification(BEiT3Wrapper):
|
| 100 |
+
def __init__(self, args, num_classes, norm_layer=nn.LayerNorm, **kwargs):
|
| 101 |
+
super().__init__(args=args)
|
| 102 |
+
embed_dim = args.encoder_embed_dim
|
| 103 |
+
self.fc_norm = norm_layer(embed_dim)
|
| 104 |
+
self.head = (
|
| 105 |
+
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
self.fc_norm.apply(self._init_weights)
|
| 109 |
+
self.head.apply(self._init_weights)
|
| 110 |
+
init_scale = 0.001
|
| 111 |
+
if isinstance(self.head, nn.Linear):
|
| 112 |
+
self.head.weight.data.mul_(init_scale)
|
| 113 |
+
self.head.bias.data.mul_(init_scale)
|
| 114 |
+
|
| 115 |
+
def forward(self, image, **kwargs):
|
| 116 |
+
x = self.beit3(textual_tokens=None, visual_tokens=image)["encoder_out"]
|
| 117 |
+
t = x[:, 1:, :]
|
| 118 |
+
cls_x = self.fc_norm(t.mean(1))
|
| 119 |
+
return self.head(cls_x)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class BEiT3ForCaptioning(BEiT3Wrapper):
|
| 123 |
+
def __init__(self, args, **kwargs):
|
| 124 |
+
super().__init__(args=args)
|
| 125 |
+
embed_dim = args.encoder_embed_dim
|
| 126 |
+
self.mlm_head = nn.Linear(embed_dim, args.vocab_size)
|
| 127 |
+
self.mlm_head.apply(self._init_weights)
|
| 128 |
+
|
| 129 |
+
def forward(
|
| 130 |
+
self,
|
| 131 |
+
image,
|
| 132 |
+
text_ids,
|
| 133 |
+
padding_mask,
|
| 134 |
+
language_masked_pos,
|
| 135 |
+
text_len=None,
|
| 136 |
+
incremental_state=None,
|
| 137 |
+
**kwargs
|
| 138 |
+
):
|
| 139 |
+
text_len = text_len if text_len is not None else text_ids.size(1)
|
| 140 |
+
image_len = self.beit3.vision_embed.num_position_embeddings()
|
| 141 |
+
max_len = text_len + image_len
|
| 142 |
+
uni_mask = torch.zeros(
|
| 143 |
+
(max_len, max_len), dtype=torch.long, device=text_ids.device
|
| 144 |
+
)
|
| 145 |
+
i_start, i_end = 0, image_len
|
| 146 |
+
t_start, t_end = image_len, max_len
|
| 147 |
+
# triangle mask for caption to caption
|
| 148 |
+
uni_mask[t_start:t_end, t_start:t_end] = torch.tril(
|
| 149 |
+
torch.ones(text_len, text_len, dtype=torch.long, device=text_ids.device)
|
| 150 |
+
)
|
| 151 |
+
# full attention for caption to image
|
| 152 |
+
uni_mask[t_start:t_end, i_start:i_end] = 1
|
| 153 |
+
# full attention for image to image
|
| 154 |
+
uni_mask[i_start:i_end, i_start:i_end] = 1
|
| 155 |
+
uni_mask = 1 - uni_mask
|
| 156 |
+
|
| 157 |
+
if incremental_state is not None:
|
| 158 |
+
for idx in range(self.get_num_layers()):
|
| 159 |
+
if idx not in incremental_state:
|
| 160 |
+
incremental_state[idx] = {}
|
| 161 |
+
|
| 162 |
+
# for incremental decoding
|
| 163 |
+
positions = None
|
| 164 |
+
if image is None:
|
| 165 |
+
uni_mask = uni_mask[-2:]
|
| 166 |
+
padding_mask = None
|
| 167 |
+
# start position (2 (fairseq starts at 2) + cur_position) is equal to text_len
|
| 168 |
+
positions = (
|
| 169 |
+
torch.arange(
|
| 170 |
+
text_len, text_ids.size(1) + text_len, device=text_ids.device
|
| 171 |
+
)
|
| 172 |
+
.long()
|
| 173 |
+
.unsqueeze(0)
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
outputs = self.beit3(
|
| 177 |
+
textual_tokens=text_ids,
|
| 178 |
+
visual_tokens=image,
|
| 179 |
+
text_padding_position=padding_mask,
|
| 180 |
+
attn_mask=uni_mask,
|
| 181 |
+
incremental_state=incremental_state,
|
| 182 |
+
positions=positions,
|
| 183 |
+
)
|
| 184 |
+
if image is not None:
|
| 185 |
+
text_feats = outputs["encoder_out"][:, image_len:]
|
| 186 |
+
else:
|
| 187 |
+
text_feats = outputs["encoder_out"]
|
| 188 |
+
|
| 189 |
+
if language_masked_pos is not None:
|
| 190 |
+
text_feats = text_feats[language_masked_pos.bool()]
|
| 191 |
+
|
| 192 |
+
return self.mlm_head(text_feats), incremental_state
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class BEiT3ForVisualQuestionAnswering(BEiT3Wrapper):
|
| 196 |
+
def __init__(self, args, num_classes, norm_layer=nn.LayerNorm, **kwargs):
|
| 197 |
+
super().__init__(args=args)
|
| 198 |
+
embed_dim = args.encoder_embed_dim
|
| 199 |
+
self.pooler = Pooler(
|
| 200 |
+
input_features=embed_dim,
|
| 201 |
+
output_features=embed_dim,
|
| 202 |
+
norm_layer=norm_layer,
|
| 203 |
+
)
|
| 204 |
+
self.pooler.apply(self._init_weights)
|
| 205 |
+
self.head = nn.Sequential(
|
| 206 |
+
nn.Linear(embed_dim, embed_dim * 2),
|
| 207 |
+
norm_layer(embed_dim * 2),
|
| 208 |
+
nn.GELU(),
|
| 209 |
+
nn.Linear(embed_dim * 2, num_classes),
|
| 210 |
+
)
|
| 211 |
+
self.head.apply(self._init_weights)
|
| 212 |
+
|
| 213 |
+
def forward(self, image, question, padding_mask, **kwargs):
|
| 214 |
+
outputs = self.beit3(
|
| 215 |
+
textual_tokens=question,
|
| 216 |
+
visual_tokens=image,
|
| 217 |
+
text_padding_position=padding_mask,
|
| 218 |
+
)
|
| 219 |
+
x = outputs["encoder_out"]
|
| 220 |
+
cls_rep = self.pooler(x)
|
| 221 |
+
return self.head(cls_rep)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class BEiT3ForRetrieval(BEiT3Wrapper):
|
| 225 |
+
def __init__(self, args, **kwargs):
|
| 226 |
+
super().__init__(args=args)
|
| 227 |
+
embed_dim = args.encoder_embed_dim
|
| 228 |
+
self.language_head = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 229 |
+
self.vision_head = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 230 |
+
self.language_head.apply(self._init_weights)
|
| 231 |
+
self.vision_head.apply(self._init_weights)
|
| 232 |
+
self.criterion = utils.ClipLoss(
|
| 233 |
+
rank=utils.get_rank(),
|
| 234 |
+
world_size=utils.get_world_size(),
|
| 235 |
+
)
|
| 236 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 237 |
+
|
| 238 |
+
def forward(
|
| 239 |
+
self,
|
| 240 |
+
image=None,
|
| 241 |
+
text_description=None,
|
| 242 |
+
padding_mask=None,
|
| 243 |
+
only_infer=False,
|
| 244 |
+
**kwargs
|
| 245 |
+
):
|
| 246 |
+
if image is not None:
|
| 247 |
+
outputs = self.beit3(
|
| 248 |
+
textual_tokens=None,
|
| 249 |
+
visual_tokens=image,
|
| 250 |
+
text_padding_position=None,
|
| 251 |
+
)
|
| 252 |
+
x = outputs["encoder_out"]
|
| 253 |
+
vision_cls = self.vision_head(x[:, 0, :])
|
| 254 |
+
vision_cls = F.normalize(vision_cls, dim=-1)
|
| 255 |
+
else:
|
| 256 |
+
vision_cls = None
|
| 257 |
+
|
| 258 |
+
if text_description is not None:
|
| 259 |
+
outputs = self.beit3(
|
| 260 |
+
textual_tokens=text_description,
|
| 261 |
+
visual_tokens=None,
|
| 262 |
+
text_padding_position=padding_mask,
|
| 263 |
+
)
|
| 264 |
+
x = outputs["encoder_out"]
|
| 265 |
+
language_cls = self.language_head(x[:, 0, :])
|
| 266 |
+
language_cls = F.normalize(language_cls, dim=-1)
|
| 267 |
+
else:
|
| 268 |
+
language_cls = None
|
| 269 |
+
|
| 270 |
+
if only_infer:
|
| 271 |
+
return vision_cls, language_cls
|
| 272 |
+
else:
|
| 273 |
+
loss, logits_per_image, logits_per_text = self.criterion(
|
| 274 |
+
vision_cls, language_cls, self.logit_scale.exp()
|
| 275 |
+
)
|
| 276 |
+
return loss, vision_cls, language_cls
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
@register_model
|
| 280 |
+
def beit3_base_patch16_224_imageclassification(pretrained=False, **kwargs):
|
| 281 |
+
args = _get_base_config(**kwargs)
|
| 282 |
+
args.normalize_output = False
|
| 283 |
+
model = BEiT3ForImageClassification(args, num_classes=1000, **kwargs)
|
| 284 |
+
return model
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
@register_model
|
| 288 |
+
def beit3_large_patch16_224_imageclassification(pretrained=False, **kwargs):
|
| 289 |
+
args = _get_large_config(**kwargs)
|
| 290 |
+
args.normalize_output = False
|
| 291 |
+
model = BEiT3ForImageClassification(args, num_classes=1000, **kwargs)
|
| 292 |
+
return model
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
@register_model
|
| 296 |
+
def beit3_base_patch16_224_nlvr2(pretrained=False, **kwargs):
|
| 297 |
+
args = _get_base_config(**kwargs)
|
| 298 |
+
model = BEiT3ForVisualReasoning(args, num_classes=2, **kwargs)
|
| 299 |
+
return model
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
@register_model
|
| 303 |
+
def beit3_large_patch16_224_nlvr2(pretrained=False, **kwargs):
|
| 304 |
+
args = _get_large_config(**kwargs)
|
| 305 |
+
model = BEiT3ForVisualReasoning(args, num_classes=2, **kwargs)
|
| 306 |
+
return model
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
@register_model
|
| 310 |
+
def beit3_base_patch16_384_vqav2(pretrained=False, **kwargs):
|
| 311 |
+
args = _get_base_config(img_size=384, **kwargs)
|
| 312 |
+
args.normalize_output = False
|
| 313 |
+
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
|
| 314 |
+
return model
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
@register_model
|
| 318 |
+
def beit3_base_patch16_480_vqav2(pretrained=False, **kwargs):
|
| 319 |
+
args = _get_base_config(img_size=480, **kwargs)
|
| 320 |
+
args.normalize_output = False
|
| 321 |
+
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
|
| 322 |
+
return model
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
@register_model
|
| 326 |
+
def beit3_large_patch16_384_vqav2(pretrained=False, **kwargs):
|
| 327 |
+
args = _get_large_config(img_size=384, **kwargs)
|
| 328 |
+
args.normalize_output = False
|
| 329 |
+
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
|
| 330 |
+
return model
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
@register_model
|
| 334 |
+
def beit3_large_patch16_480_vqav2(pretrained=False, **kwargs):
|
| 335 |
+
args = _get_large_config(img_size=480, **kwargs)
|
| 336 |
+
args.normalize_output = False
|
| 337 |
+
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
|
| 338 |
+
return model
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
@register_model
|
| 342 |
+
def beit3_large_patch16_768_vqav2(pretrained=False, **kwargs):
|
| 343 |
+
args = _get_large_config(img_size=768, **kwargs)
|
| 344 |
+
args.normalize_output = False
|
| 345 |
+
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
|
| 346 |
+
return model
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
@register_model
|
| 350 |
+
def beit3_base_patch16_224_captioning(pretrained=False, **kwargs):
|
| 351 |
+
args = _get_base_config(**kwargs)
|
| 352 |
+
model = BEiT3ForCaptioning(args, **kwargs)
|
| 353 |
+
return model
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
@register_model
|
| 357 |
+
def beit3_base_patch16_480_captioning(pretrained=False, **kwargs):
|
| 358 |
+
args = _get_base_config(img_size=480, **kwargs)
|
| 359 |
+
model = BEiT3ForCaptioning(args, **kwargs)
|
| 360 |
+
return model
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
@register_model
|
| 364 |
+
def beit3_large_patch16_480_captioning(pretrained=False, **kwargs):
|
| 365 |
+
args = _get_large_config(img_size=480, **kwargs)
|
| 366 |
+
model = BEiT3ForCaptioning(args, **kwargs)
|
| 367 |
+
return model
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@register_model
|
| 371 |
+
def beit3_base_patch16_224_retrieval(pretrained=False, **kwargs):
|
| 372 |
+
args = _get_base_config(**kwargs)
|
| 373 |
+
model = BEiT3ForRetrieval(args, **kwargs)
|
| 374 |
+
return model
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
@register_model
|
| 378 |
+
def beit3_base_patch16_384_retrieval(pretrained=False, **kwargs):
|
| 379 |
+
args = _get_base_config(img_size=384, **kwargs)
|
| 380 |
+
model = BEiT3ForRetrieval(args, **kwargs)
|
| 381 |
+
return model
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
@register_model
|
| 385 |
+
def beit3_large_patch16_384_retrieval(pretrained=False, **kwargs):
|
| 386 |
+
args = _get_large_config(img_size=384, **kwargs)
|
| 387 |
+
model = BEiT3ForRetrieval(args, **kwargs)
|
| 388 |
+
return model
|
src/itr/modeling_utils.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
|
| 4 |
+
# Copyright (c) 2023 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# --------------------------------------------------------'
|
| 7 |
+
|
| 8 |
+
import math
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
|
| 13 |
+
from torchscale.architecture.config import EncoderConfig
|
| 14 |
+
from torchscale.model.BEiT3 import BEiT3
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def trunc_normal_(tensor, mean=0.0, std=1.0):
|
| 18 |
+
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def _get_base_config(
|
| 22 |
+
img_size=224,
|
| 23 |
+
patch_size=16,
|
| 24 |
+
drop_path_rate=0,
|
| 25 |
+
checkpoint_activations=None,
|
| 26 |
+
mlp_ratio=4,
|
| 27 |
+
vocab_size=64010,
|
| 28 |
+
**kwargs
|
| 29 |
+
):
|
| 30 |
+
return EncoderConfig(
|
| 31 |
+
img_size=img_size,
|
| 32 |
+
patch_size=patch_size,
|
| 33 |
+
vocab_size=vocab_size,
|
| 34 |
+
multiway=True,
|
| 35 |
+
layernorm_embedding=False,
|
| 36 |
+
normalize_output=True,
|
| 37 |
+
no_output_layer=True,
|
| 38 |
+
drop_path_rate=drop_path_rate,
|
| 39 |
+
encoder_embed_dim=768,
|
| 40 |
+
encoder_attention_heads=12,
|
| 41 |
+
encoder_ffn_embed_dim=int(768 * mlp_ratio),
|
| 42 |
+
encoder_layers=12,
|
| 43 |
+
checkpoint_activations=checkpoint_activations,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def _get_large_config(
|
| 48 |
+
img_size=224,
|
| 49 |
+
patch_size=16,
|
| 50 |
+
drop_path_rate=0,
|
| 51 |
+
checkpoint_activations=None,
|
| 52 |
+
mlp_ratio=4,
|
| 53 |
+
vocab_size=64010,
|
| 54 |
+
**kwargs
|
| 55 |
+
):
|
| 56 |
+
return EncoderConfig(
|
| 57 |
+
img_size=img_size,
|
| 58 |
+
patch_size=patch_size,
|
| 59 |
+
vocab_size=vocab_size,
|
| 60 |
+
multiway=True,
|
| 61 |
+
layernorm_embedding=False,
|
| 62 |
+
normalize_output=True,
|
| 63 |
+
no_output_layer=True,
|
| 64 |
+
drop_path_rate=drop_path_rate,
|
| 65 |
+
encoder_embed_dim=1024,
|
| 66 |
+
encoder_attention_heads=16,
|
| 67 |
+
encoder_ffn_embed_dim=int(1024 * mlp_ratio),
|
| 68 |
+
encoder_layers=24,
|
| 69 |
+
checkpoint_activations=checkpoint_activations,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class BEiT3Wrapper(nn.Module):
|
| 74 |
+
def __init__(self, args, **kwargs):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.args = args
|
| 77 |
+
self.beit3 = BEiT3(args)
|
| 78 |
+
self.apply(self._init_weights)
|
| 79 |
+
|
| 80 |
+
def fix_init_weight(self):
|
| 81 |
+
def rescale(param, layer_id):
|
| 82 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
| 83 |
+
|
| 84 |
+
for layer_id, layer in enumerate(self.blocks):
|
| 85 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
| 86 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
| 87 |
+
|
| 88 |
+
def get_num_layers(self):
|
| 89 |
+
return self.beit3.encoder.num_layers
|
| 90 |
+
|
| 91 |
+
@torch.jit.ignore
|
| 92 |
+
def no_weight_decay(self):
|
| 93 |
+
return {
|
| 94 |
+
'pos_embed',
|
| 95 |
+
'cls_token',
|
| 96 |
+
'beit3.encoder.embed_positions.A.weight',
|
| 97 |
+
'beit3.vision_embed.cls_token',
|
| 98 |
+
'logit_scale',
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
def _init_weights(self, m):
|
| 102 |
+
if isinstance(m, nn.Linear):
|
| 103 |
+
trunc_normal_(m.weight, std=0.02)
|
| 104 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 105 |
+
nn.init.constant_(m.bias, 0)
|
| 106 |
+
elif isinstance(m, nn.LayerNorm):
|
| 107 |
+
nn.init.constant_(m.bias, 0)
|
| 108 |
+
nn.init.constant_(m.weight, 1.0)
|
src/itr/router.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from .vlm_model import VisionLanguageModel
|
| 2 |
+
from .beit3_model import Beit3Model
|
| 3 |
+
from fastapi import APIRouter, File, status
|
| 4 |
+
from fastapi.responses import JSONResponse
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
|
| 7 |
+
from .dtb_cursor import DatabaseCursor
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Item(BaseModel):
|
| 11 |
+
query_text: str
|
| 12 |
+
topk: int
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
router = APIRouter()
|
| 16 |
+
|
| 17 |
+
vectordb_cursor = None
|
| 18 |
+
vlm_model = None
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def init_vectordb(**kargs):
|
| 22 |
+
# Singleton pattern
|
| 23 |
+
global vectordb_cursor
|
| 24 |
+
if vectordb_cursor is None:
|
| 25 |
+
vectordb_cursor = DatabaseCursor(**kargs)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def init_model(device: str):
|
| 29 |
+
# Singleton
|
| 30 |
+
global vlm_model
|
| 31 |
+
if vlm_model is None:
|
| 32 |
+
vlm_model = Beit3Model(device=device)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@router.post("/retrieval")
|
| 36 |
+
async def retrieve(item: Item) -> JSONResponse:
|
| 37 |
+
try:
|
| 38 |
+
query_vector = vlm_model.get_embedding(input=item.query_text)
|
| 39 |
+
search_results = vectordb_cursor.kNN_search(query_vector, item.topk)
|
| 40 |
+
except Exception:
|
| 41 |
+
return JSONResponse(
|
| 42 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 43 |
+
content={"message": "Search error"},
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
return JSONResponse(
|
| 47 |
+
status_code=status.HTTP_200_OK,
|
| 48 |
+
content={"message": "success", "details": search_results},
|
| 49 |
+
)
|
src/itr/utils.py
ADDED
|
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
|
| 4 |
+
# Copyright (c) 2023 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# --------------------------------------------------------'
|
| 7 |
+
|
| 8 |
+
import argparse
|
| 9 |
+
import datetime
|
| 10 |
+
import io
|
| 11 |
+
import json
|
| 12 |
+
import math
|
| 13 |
+
import os
|
| 14 |
+
import time
|
| 15 |
+
from collections import defaultdict, deque
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.distributed as dist
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
from timm.utils import get_state_dict
|
| 24 |
+
from torch import inf
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def bool_flag(s):
|
| 28 |
+
"""
|
| 29 |
+
Parse boolean arguments from the command line.
|
| 30 |
+
"""
|
| 31 |
+
FALSY_STRINGS = {"off", "false", "0"}
|
| 32 |
+
TRUTHY_STRINGS = {"on", "true", "1"}
|
| 33 |
+
if s.lower() in FALSY_STRINGS:
|
| 34 |
+
return False
|
| 35 |
+
elif s.lower() in TRUTHY_STRINGS:
|
| 36 |
+
return True
|
| 37 |
+
else:
|
| 38 |
+
raise argparse.ArgumentTypeError("invalid value for a boolean flag")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class SmoothedValue:
|
| 42 |
+
"""Track a series of values and provide access to smoothed values over a
|
| 43 |
+
window or the global series average.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(self, window_size=20, fmt=None):
|
| 47 |
+
if fmt is None:
|
| 48 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
| 49 |
+
self.deque = deque(maxlen=window_size)
|
| 50 |
+
self.total = 0.0
|
| 51 |
+
self.count = 0
|
| 52 |
+
self.fmt = fmt
|
| 53 |
+
|
| 54 |
+
def update(self, value, n=1):
|
| 55 |
+
self.deque.append(value)
|
| 56 |
+
self.count += n
|
| 57 |
+
self.total += value * n
|
| 58 |
+
|
| 59 |
+
def synchronize_between_processes(self):
|
| 60 |
+
"""
|
| 61 |
+
Warning: does not synchronize the deque!
|
| 62 |
+
"""
|
| 63 |
+
if not is_dist_avail_and_initialized():
|
| 64 |
+
return
|
| 65 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
| 66 |
+
dist.barrier()
|
| 67 |
+
dist.all_reduce(t)
|
| 68 |
+
t = t.tolist()
|
| 69 |
+
self.count = int(t[0])
|
| 70 |
+
self.total = t[1]
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def median(self):
|
| 74 |
+
d = torch.tensor(list(self.deque))
|
| 75 |
+
return d.median().item()
|
| 76 |
+
|
| 77 |
+
@property
|
| 78 |
+
def avg(self):
|
| 79 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
| 80 |
+
return d.mean().item()
|
| 81 |
+
|
| 82 |
+
@property
|
| 83 |
+
def global_avg(self):
|
| 84 |
+
return self.total / self.count
|
| 85 |
+
|
| 86 |
+
@property
|
| 87 |
+
def max(self):
|
| 88 |
+
return max(self.deque)
|
| 89 |
+
|
| 90 |
+
@property
|
| 91 |
+
def value(self):
|
| 92 |
+
return self.deque[-1]
|
| 93 |
+
|
| 94 |
+
def __str__(self):
|
| 95 |
+
return self.fmt.format(
|
| 96 |
+
median=self.median,
|
| 97 |
+
avg=self.avg,
|
| 98 |
+
global_avg=self.global_avg,
|
| 99 |
+
max=self.max,
|
| 100 |
+
value=self.value,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class MetricLogger:
|
| 105 |
+
def __init__(self, delimiter="\t"):
|
| 106 |
+
self.meters = defaultdict(SmoothedValue)
|
| 107 |
+
self.delimiter = delimiter
|
| 108 |
+
|
| 109 |
+
def update(self, **kwargs):
|
| 110 |
+
for k, v in kwargs.items():
|
| 111 |
+
if v is None:
|
| 112 |
+
continue
|
| 113 |
+
if isinstance(v, torch.Tensor):
|
| 114 |
+
v = v.item()
|
| 115 |
+
assert isinstance(v, (float, int))
|
| 116 |
+
self.meters[k].update(v)
|
| 117 |
+
|
| 118 |
+
def __getattr__(self, attr):
|
| 119 |
+
if attr in self.meters:
|
| 120 |
+
return self.meters[attr]
|
| 121 |
+
if attr in self.__dict__:
|
| 122 |
+
return self.__dict__[attr]
|
| 123 |
+
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
|
| 124 |
+
|
| 125 |
+
def __str__(self):
|
| 126 |
+
loss_str = []
|
| 127 |
+
for name, meter in self.meters.items():
|
| 128 |
+
loss_str.append(f"{name}: {str(meter)}")
|
| 129 |
+
return self.delimiter.join(loss_str)
|
| 130 |
+
|
| 131 |
+
def synchronize_between_processes(self):
|
| 132 |
+
for meter in self.meters.values():
|
| 133 |
+
meter.synchronize_between_processes()
|
| 134 |
+
|
| 135 |
+
def add_meter(self, name, meter):
|
| 136 |
+
self.meters[name] = meter
|
| 137 |
+
|
| 138 |
+
def log_every(self, iterable, print_freq, header=None):
|
| 139 |
+
i = 0
|
| 140 |
+
if not header:
|
| 141 |
+
header = ''
|
| 142 |
+
start_time = time.time()
|
| 143 |
+
end = time.time()
|
| 144 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
| 145 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
| 146 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
| 147 |
+
log_msg = [
|
| 148 |
+
header,
|
| 149 |
+
'[{0' + space_fmt + '}/{1}]',
|
| 150 |
+
'eta: {eta}',
|
| 151 |
+
'{meters}',
|
| 152 |
+
'time: {time}',
|
| 153 |
+
'data: {data}',
|
| 154 |
+
]
|
| 155 |
+
if torch.cuda.is_available():
|
| 156 |
+
log_msg.append('max mem: {memory:.0f}')
|
| 157 |
+
log_msg = self.delimiter.join(log_msg)
|
| 158 |
+
MB = 1024.0 * 1024.0
|
| 159 |
+
for obj in iterable:
|
| 160 |
+
data_time.update(time.time() - end)
|
| 161 |
+
yield obj
|
| 162 |
+
iter_time.update(time.time() - end)
|
| 163 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
| 164 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
| 165 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
| 166 |
+
if torch.cuda.is_available():
|
| 167 |
+
print(
|
| 168 |
+
log_msg.format(
|
| 169 |
+
i,
|
| 170 |
+
len(iterable),
|
| 171 |
+
eta=eta_string,
|
| 172 |
+
meters=str(self),
|
| 173 |
+
time=str(iter_time),
|
| 174 |
+
data=str(data_time),
|
| 175 |
+
memory=torch.cuda.max_memory_allocated() / MB,
|
| 176 |
+
)
|
| 177 |
+
)
|
| 178 |
+
else:
|
| 179 |
+
print(
|
| 180 |
+
log_msg.format(
|
| 181 |
+
i,
|
| 182 |
+
len(iterable),
|
| 183 |
+
eta=eta_string,
|
| 184 |
+
meters=str(self),
|
| 185 |
+
time=str(iter_time),
|
| 186 |
+
data=str(data_time),
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
i += 1
|
| 190 |
+
end = time.time()
|
| 191 |
+
total_time = time.time() - start_time
|
| 192 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
| 193 |
+
print(
|
| 194 |
+
'{} Total time: {} ({:.4f} s / it)'.format(
|
| 195 |
+
header, total_time_str, total_time / len(iterable)
|
| 196 |
+
)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def _load_checkpoint_for_ema(model_ema, checkpoint):
|
| 201 |
+
"""
|
| 202 |
+
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
|
| 203 |
+
"""
|
| 204 |
+
mem_file = io.BytesIO()
|
| 205 |
+
torch.save(checkpoint, mem_file)
|
| 206 |
+
mem_file.seek(0)
|
| 207 |
+
model_ema._load_checkpoint(mem_file)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def setup_for_distributed(is_master):
|
| 211 |
+
"""
|
| 212 |
+
This function disables printing when not in master process
|
| 213 |
+
"""
|
| 214 |
+
import builtins as __builtin__
|
| 215 |
+
|
| 216 |
+
builtin_print = __builtin__.print
|
| 217 |
+
|
| 218 |
+
def print(*args, **kwargs):
|
| 219 |
+
force = kwargs.pop('force', False)
|
| 220 |
+
if is_master or force:
|
| 221 |
+
builtin_print(*args, **kwargs)
|
| 222 |
+
|
| 223 |
+
__builtin__.print = print
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def is_dist_avail_and_initialized():
|
| 227 |
+
if not dist.is_available():
|
| 228 |
+
return False
|
| 229 |
+
if not dist.is_initialized():
|
| 230 |
+
return False
|
| 231 |
+
return True
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def get_world_size():
|
| 235 |
+
if not is_dist_avail_and_initialized():
|
| 236 |
+
return 1
|
| 237 |
+
return dist.get_world_size()
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def get_rank():
|
| 241 |
+
if not is_dist_avail_and_initialized():
|
| 242 |
+
return 0
|
| 243 |
+
return dist.get_rank()
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def is_main_process():
|
| 247 |
+
return get_rank() == 0
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def save_on_master(*args, **kwargs):
|
| 251 |
+
if is_main_process():
|
| 252 |
+
torch.save(*args, **kwargs)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def _get_rank_env():
|
| 256 |
+
if "RANK" in os.environ:
|
| 257 |
+
return int(os.environ["RANK"])
|
| 258 |
+
else:
|
| 259 |
+
return int(os.environ['OMPI_COMM_WORLD_RANK'])
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _get_local_rank_env():
|
| 263 |
+
if "LOCAL_RANK" in os.environ:
|
| 264 |
+
return int(os.environ["LOCAL_RANK"])
|
| 265 |
+
else:
|
| 266 |
+
return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def _get_world_size_env():
|
| 270 |
+
if "WORLD_SIZE" in os.environ:
|
| 271 |
+
return int(os.environ["WORLD_SIZE"])
|
| 272 |
+
else:
|
| 273 |
+
return int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git)
|
| 277 |
+
def init_distributed_mode(args):
|
| 278 |
+
if args.dist_on_itp:
|
| 279 |
+
args.rank = _get_rank_env()
|
| 280 |
+
args.world_size = _get_world_size_env() # int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
| 281 |
+
args.gpu = _get_local_rank_env()
|
| 282 |
+
args.dist_url = "tcp://{}:{}".format(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
|
| 283 |
+
os.environ['LOCAL_RANK'] = str(args.gpu)
|
| 284 |
+
os.environ['RANK'] = str(args.rank)
|
| 285 |
+
os.environ['WORLD_SIZE'] = str(args.world_size)
|
| 286 |
+
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
| 287 |
+
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
| 288 |
+
args.rank = int(os.environ["RANK"])
|
| 289 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
| 290 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
| 291 |
+
elif 'SLURM_PROCID' in os.environ:
|
| 292 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
| 293 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
| 294 |
+
else:
|
| 295 |
+
print('Not using distributed mode')
|
| 296 |
+
args.distributed = False
|
| 297 |
+
return
|
| 298 |
+
|
| 299 |
+
args.distributed = True
|
| 300 |
+
|
| 301 |
+
torch.cuda.set_device(args.gpu)
|
| 302 |
+
args.dist_backend = 'nccl'
|
| 303 |
+
print(
|
| 304 |
+
f'| distributed init (rank {args.rank}): {args.dist_url}, gpu {args.gpu}',
|
| 305 |
+
flush=True,
|
| 306 |
+
)
|
| 307 |
+
torch.distributed.init_process_group(
|
| 308 |
+
backend=args.dist_backend,
|
| 309 |
+
init_method=args.dist_url,
|
| 310 |
+
world_size=args.world_size,
|
| 311 |
+
rank=args.rank,
|
| 312 |
+
timeout=datetime.timedelta(0, 7200),
|
| 313 |
+
)
|
| 314 |
+
torch.distributed.barrier()
|
| 315 |
+
setup_for_distributed(args.rank == 0)
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
|
| 319 |
+
missing_keys = []
|
| 320 |
+
unexpected_keys = []
|
| 321 |
+
error_msgs = []
|
| 322 |
+
# copy state_dict so _load_from_state_dict can modify it
|
| 323 |
+
metadata = getattr(state_dict, '_metadata', None)
|
| 324 |
+
state_dict = state_dict.copy()
|
| 325 |
+
if metadata is not None:
|
| 326 |
+
state_dict._metadata = metadata
|
| 327 |
+
|
| 328 |
+
def load(module, prefix=''):
|
| 329 |
+
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
| 330 |
+
module._load_from_state_dict(
|
| 331 |
+
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
|
| 332 |
+
)
|
| 333 |
+
for name, child in module._modules.items():
|
| 334 |
+
if child is not None:
|
| 335 |
+
load(child, prefix + name + '.')
|
| 336 |
+
|
| 337 |
+
load(model, prefix=prefix)
|
| 338 |
+
|
| 339 |
+
warn_missing_keys = []
|
| 340 |
+
ignore_missing_keys = []
|
| 341 |
+
for key in missing_keys:
|
| 342 |
+
keep_flag = True
|
| 343 |
+
for ignore_key in ignore_missing.split('|'):
|
| 344 |
+
if ignore_key in key:
|
| 345 |
+
keep_flag = False
|
| 346 |
+
break
|
| 347 |
+
if keep_flag:
|
| 348 |
+
warn_missing_keys.append(key)
|
| 349 |
+
else:
|
| 350 |
+
ignore_missing_keys.append(key)
|
| 351 |
+
|
| 352 |
+
missing_keys = warn_missing_keys
|
| 353 |
+
|
| 354 |
+
if len(missing_keys) > 0:
|
| 355 |
+
print(
|
| 356 |
+
"Weights of {} not initialized from pretrained model: {}".format(
|
| 357 |
+
model.__class__.__name__, missing_keys
|
| 358 |
+
)
|
| 359 |
+
)
|
| 360 |
+
if len(unexpected_keys) > 0:
|
| 361 |
+
print(
|
| 362 |
+
"Weights from pretrained model not used in {}: {}".format(
|
| 363 |
+
model.__class__.__name__, unexpected_keys
|
| 364 |
+
)
|
| 365 |
+
)
|
| 366 |
+
if len(ignore_missing_keys) > 0:
|
| 367 |
+
print(
|
| 368 |
+
"Ignored weights of {} not initialized from pretrained model: {}".format(
|
| 369 |
+
model.__class__.__name__, ignore_missing_keys
|
| 370 |
+
)
|
| 371 |
+
)
|
| 372 |
+
if len(error_msgs) > 0:
|
| 373 |
+
print('\n'.join(error_msgs))
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class NativeScalerWithGradNormCount:
|
| 377 |
+
state_dict_key = "amp_scaler"
|
| 378 |
+
|
| 379 |
+
def __init__(self):
|
| 380 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
| 381 |
+
|
| 382 |
+
def __call__(
|
| 383 |
+
self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True
|
| 384 |
+
):
|
| 385 |
+
self._scaler.scale(loss).backward(create_graph=create_graph)
|
| 386 |
+
if update_grad:
|
| 387 |
+
if clip_grad is not None:
|
| 388 |
+
assert parameters is not None
|
| 389 |
+
self._scaler.unscale_(
|
| 390 |
+
optimizer
|
| 391 |
+
) # unscale the gradients of optimizer's assigned params in-place
|
| 392 |
+
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
|
| 393 |
+
else:
|
| 394 |
+
self._scaler.unscale_(optimizer)
|
| 395 |
+
norm = get_grad_norm_(parameters)
|
| 396 |
+
self._scaler.step(optimizer)
|
| 397 |
+
self._scaler.update()
|
| 398 |
+
else:
|
| 399 |
+
norm = None
|
| 400 |
+
return norm
|
| 401 |
+
|
| 402 |
+
def state_dict(self):
|
| 403 |
+
return self._scaler.state_dict()
|
| 404 |
+
|
| 405 |
+
def load_state_dict(self, state_dict):
|
| 406 |
+
self._scaler.load_state_dict(state_dict)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
|
| 410 |
+
if isinstance(parameters, torch.Tensor):
|
| 411 |
+
parameters = [parameters]
|
| 412 |
+
parameters = [p for p in parameters if p.grad is not None]
|
| 413 |
+
norm_type = float(norm_type)
|
| 414 |
+
if len(parameters) == 0:
|
| 415 |
+
return torch.tensor(0.0)
|
| 416 |
+
device = parameters[0].grad.device
|
| 417 |
+
if norm_type == inf:
|
| 418 |
+
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
|
| 419 |
+
else:
|
| 420 |
+
total_norm = torch.norm(
|
| 421 |
+
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
|
| 422 |
+
norm_type,
|
| 423 |
+
)
|
| 424 |
+
return total_norm
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def cosine_scheduler(
|
| 428 |
+
base_value,
|
| 429 |
+
final_value,
|
| 430 |
+
epochs,
|
| 431 |
+
niter_per_ep,
|
| 432 |
+
warmup_epochs=0,
|
| 433 |
+
start_warmup_value=0,
|
| 434 |
+
warmup_steps=-1,
|
| 435 |
+
sched_type="cos",
|
| 436 |
+
):
|
| 437 |
+
warmup_schedule = np.array([])
|
| 438 |
+
warmup_iters = warmup_epochs * niter_per_ep
|
| 439 |
+
if warmup_steps > 0:
|
| 440 |
+
warmup_iters = warmup_steps
|
| 441 |
+
print("Set warmup steps = %d" % warmup_iters)
|
| 442 |
+
if warmup_epochs > 0:
|
| 443 |
+
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
|
| 444 |
+
|
| 445 |
+
if sched_type == "cos":
|
| 446 |
+
iters = np.arange(epochs * niter_per_ep - warmup_iters)
|
| 447 |
+
schedule = np.array(
|
| 448 |
+
[
|
| 449 |
+
final_value
|
| 450 |
+
+ 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters))))
|
| 451 |
+
for i in iters
|
| 452 |
+
]
|
| 453 |
+
)
|
| 454 |
+
elif sched_type == "linear":
|
| 455 |
+
schedule = np.linspace(base_value, final_value, epochs * niter_per_ep - warmup_iters)
|
| 456 |
+
else:
|
| 457 |
+
raise NotImplementedError()
|
| 458 |
+
|
| 459 |
+
schedule = np.concatenate((warmup_schedule, schedule))
|
| 460 |
+
|
| 461 |
+
assert len(schedule) == epochs * niter_per_ep
|
| 462 |
+
return schedule
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
|
| 466 |
+
output_dir = Path(args.output_dir)
|
| 467 |
+
if loss_scaler is not None:
|
| 468 |
+
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch)]
|
| 469 |
+
for checkpoint_path in checkpoint_paths:
|
| 470 |
+
to_save = {
|
| 471 |
+
'model': model_without_ddp.state_dict(),
|
| 472 |
+
'optimizer': optimizer.state_dict(),
|
| 473 |
+
'epoch': epoch,
|
| 474 |
+
'scaler': loss_scaler.state_dict(),
|
| 475 |
+
'args': args,
|
| 476 |
+
}
|
| 477 |
+
|
| 478 |
+
if model_ema is not None:
|
| 479 |
+
to_save['model_ema'] = get_state_dict(model_ema)
|
| 480 |
+
|
| 481 |
+
save_on_master(to_save, checkpoint_path)
|
| 482 |
+
else:
|
| 483 |
+
client_state = {'epoch': epoch, "args": args}
|
| 484 |
+
if model_ema is not None:
|
| 485 |
+
client_state['model_ema'] = get_state_dict(model_ema)
|
| 486 |
+
model.save_checkpoint(
|
| 487 |
+
save_dir=args.output_dir, tag="checkpoint-%s" % epoch, client_state=client_state
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
|
| 492 |
+
output_dir = Path(args.output_dir)
|
| 493 |
+
if loss_scaler is not None:
|
| 494 |
+
# torch.amp
|
| 495 |
+
if args.auto_resume and len(args.resume) == 0:
|
| 496 |
+
import glob
|
| 497 |
+
|
| 498 |
+
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
|
| 499 |
+
latest_ckpt = -1
|
| 500 |
+
for ckpt in all_checkpoints:
|
| 501 |
+
t = ckpt.split('-')[-1].split('.')[0]
|
| 502 |
+
if t.isdigit():
|
| 503 |
+
latest_ckpt = max(int(t), latest_ckpt)
|
| 504 |
+
if latest_ckpt >= 0:
|
| 505 |
+
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
|
| 506 |
+
print("Auto resume checkpoint: %s" % args.resume)
|
| 507 |
+
|
| 508 |
+
if args.resume:
|
| 509 |
+
if args.resume.startswith('https'):
|
| 510 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
| 511 |
+
args.resume, map_location='cpu', check_hash=True
|
| 512 |
+
)
|
| 513 |
+
else:
|
| 514 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
| 515 |
+
model_without_ddp.load_state_dict(checkpoint['model'])
|
| 516 |
+
print("Resume checkpoint %s" % args.resume)
|
| 517 |
+
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
|
| 518 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
| 519 |
+
args.start_epoch = checkpoint['epoch'] + 1
|
| 520 |
+
if hasattr(args, 'model_ema') and args.model_ema:
|
| 521 |
+
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
|
| 522 |
+
if 'scaler' in checkpoint:
|
| 523 |
+
loss_scaler.load_state_dict(checkpoint['scaler'])
|
| 524 |
+
print("With optim & sched!")
|
| 525 |
+
else:
|
| 526 |
+
# deepspeed, only support '--auto_resume'.
|
| 527 |
+
if args.auto_resume:
|
| 528 |
+
import glob
|
| 529 |
+
|
| 530 |
+
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
|
| 531 |
+
latest_ckpt = -1
|
| 532 |
+
for ckpt in all_checkpoints:
|
| 533 |
+
t = ckpt.split('-')[-1].split('.')[0]
|
| 534 |
+
if t.isdigit():
|
| 535 |
+
latest_ckpt = max(int(t), latest_ckpt)
|
| 536 |
+
if latest_ckpt >= 0:
|
| 537 |
+
args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
|
| 538 |
+
print("Auto resume checkpoint: %d" % latest_ckpt)
|
| 539 |
+
_, client_states = model.load_checkpoint(
|
| 540 |
+
args.output_dir, tag='checkpoint-%d' % latest_ckpt
|
| 541 |
+
)
|
| 542 |
+
args.start_epoch = client_states['epoch'] + 1
|
| 543 |
+
if model_ema is not None:
|
| 544 |
+
if args.model_ema:
|
| 545 |
+
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git)
|
| 549 |
+
def load_model_and_may_interpolate(ckpt_path, model, model_key, model_prefix):
|
| 550 |
+
if ckpt_path.startswith('https'):
|
| 551 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
| 552 |
+
ckpt_path, map_location='cpu', check_hash=True
|
| 553 |
+
)
|
| 554 |
+
else:
|
| 555 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
| 556 |
+
|
| 557 |
+
print("Load ckpt from %s" % ckpt_path)
|
| 558 |
+
checkpoint_model = None
|
| 559 |
+
for model_key in model_key.split('|'):
|
| 560 |
+
if model_key in checkpoint:
|
| 561 |
+
checkpoint_model = checkpoint[model_key]
|
| 562 |
+
print("Load state_dict by model_key = %s" % model_key)
|
| 563 |
+
break
|
| 564 |
+
|
| 565 |
+
if checkpoint_model is None:
|
| 566 |
+
checkpoint_model = checkpoint
|
| 567 |
+
|
| 568 |
+
state_dict = model.state_dict()
|
| 569 |
+
for k in ['head.weight', 'head.bias']:
|
| 570 |
+
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
|
| 571 |
+
print(f"Removing key {k} from pretrained checkpoint")
|
| 572 |
+
del checkpoint_model[k]
|
| 573 |
+
|
| 574 |
+
# interpolate position embedding
|
| 575 |
+
for pos_embed_key in (
|
| 576 |
+
"vision_pos_embed",
|
| 577 |
+
"pos_embed",
|
| 578 |
+
"beit3.encoder.embed_positions.A.weight",
|
| 579 |
+
):
|
| 580 |
+
if pos_embed_key in checkpoint_model:
|
| 581 |
+
pos_embed_checkpoint = checkpoint_model[pos_embed_key]
|
| 582 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
| 583 |
+
if pos_embed_key == "beit3.encoder.embed_positions.A.weight":
|
| 584 |
+
# being consistent with Fairseq, which starts from 2 for position embedding
|
| 585 |
+
torchscale_model = True
|
| 586 |
+
num_patches = model.beit3.vision_embed.num_patches
|
| 587 |
+
num_extra_tokens = (
|
| 588 |
+
model.beit3.vision_embed.num_position_embeddings() + 2 - num_patches
|
| 589 |
+
)
|
| 590 |
+
else:
|
| 591 |
+
torchscale_model = False
|
| 592 |
+
num_patches = model.patch_embed.num_patches
|
| 593 |
+
num_extra_tokens = getattr(model, pos_embed_key).shape[-2] - num_patches
|
| 594 |
+
# height (== width) for the checkpoint position embedding
|
| 595 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
| 596 |
+
# height (== width) for the new position embedding
|
| 597 |
+
new_size = int(num_patches**0.5)
|
| 598 |
+
# class_token and dist_token are kept unchanged
|
| 599 |
+
if orig_size != new_size:
|
| 600 |
+
print(
|
| 601 |
+
"Position interpolate from %dx%d to %dx%d"
|
| 602 |
+
% (orig_size, orig_size, new_size, new_size)
|
| 603 |
+
)
|
| 604 |
+
if torchscale_model:
|
| 605 |
+
extra_tokens = pos_embed_checkpoint[:num_extra_tokens].unsqueeze(0)
|
| 606 |
+
# only the position tokens are interpolated
|
| 607 |
+
pos_tokens = pos_embed_checkpoint[num_extra_tokens:]
|
| 608 |
+
else:
|
| 609 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
| 610 |
+
# only the position tokens are interpolated
|
| 611 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
| 612 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(
|
| 613 |
+
0, 3, 1, 2
|
| 614 |
+
)
|
| 615 |
+
pos_tokens = torch.nn.functional.interpolate(
|
| 616 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False
|
| 617 |
+
)
|
| 618 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
| 619 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
| 620 |
+
if torchscale_model:
|
| 621 |
+
new_pos_embed = new_pos_embed.squeeze(0)
|
| 622 |
+
checkpoint_model[pos_embed_key] = new_pos_embed
|
| 623 |
+
|
| 624 |
+
load_state_dict(model, checkpoint_model, prefix=model_prefix)
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
def create_ds_config(args):
|
| 628 |
+
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
|
| 629 |
+
with open(args.deepspeed_config, mode="w") as writer:
|
| 630 |
+
ds_config = {
|
| 631 |
+
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
|
| 632 |
+
"train_micro_batch_size_per_gpu": args.batch_size,
|
| 633 |
+
"steps_per_print": 1000,
|
| 634 |
+
"optimizer": {
|
| 635 |
+
"type": "Adam",
|
| 636 |
+
"adam_w_mode": True,
|
| 637 |
+
"params": {
|
| 638 |
+
"lr": args.lr,
|
| 639 |
+
"weight_decay": args.weight_decay,
|
| 640 |
+
"bias_correction": True,
|
| 641 |
+
"betas": [args.opt_betas[0], args.opt_betas[1]],
|
| 642 |
+
"eps": args.opt_eps,
|
| 643 |
+
},
|
| 644 |
+
},
|
| 645 |
+
"fp16": {
|
| 646 |
+
"enabled": True,
|
| 647 |
+
"loss_scale": 0,
|
| 648 |
+
"initial_scale_power": getattr(args, "initial_scale_power", 12),
|
| 649 |
+
"loss_scale_window": 1000,
|
| 650 |
+
"hysteresis": 2,
|
| 651 |
+
"min_loss_scale": 1,
|
| 652 |
+
},
|
| 653 |
+
"amp": {"enabled": False, "opt_level": "O2"},
|
| 654 |
+
}
|
| 655 |
+
|
| 656 |
+
if args.clip_grad is not None:
|
| 657 |
+
ds_config.update({'gradient_clipping': args.clip_grad})
|
| 658 |
+
|
| 659 |
+
if args.zero_stage == 1:
|
| 660 |
+
ds_config.update(
|
| 661 |
+
{"zero_optimization": {"stage": args.zero_stage, "reduce_bucket_size": 5e8}}
|
| 662 |
+
)
|
| 663 |
+
elif args.zero_stage > 1:
|
| 664 |
+
raise NotImplementedError()
|
| 665 |
+
|
| 666 |
+
writer.write(json.dumps(ds_config, indent=2))
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
def merge_batch_tensors_by_dict_key(batch):
|
| 670 |
+
batch_tensors = {}
|
| 671 |
+
for tensor_key in batch[0]:
|
| 672 |
+
if isinstance(batch[0][tensor_key], torch.Tensor):
|
| 673 |
+
batch_tensors[tensor_key] = torch.stack([d[tensor_key] for d in batch])
|
| 674 |
+
else:
|
| 675 |
+
batch_tensors[tensor_key] = torch.tensor(
|
| 676 |
+
[d[tensor_key] for d in batch], dtype=torch.long
|
| 677 |
+
)
|
| 678 |
+
return batch_tensors
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
def get_loss_scale_for_deepspeed(model):
|
| 682 |
+
optimizer = model.optimizer
|
| 683 |
+
loss_scale = None
|
| 684 |
+
if hasattr(optimizer, 'loss_scale'):
|
| 685 |
+
loss_scale = optimizer.loss_scale
|
| 686 |
+
elif hasattr(optimizer, 'cur_scale'):
|
| 687 |
+
loss_scale = optimizer.cur_scale
|
| 688 |
+
return loss_scale
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
class GatherLayer(torch.autograd.Function):
|
| 692 |
+
"""
|
| 693 |
+
Gather tensors from all workers with support for backward propagation:
|
| 694 |
+
This implementation does not cut the gradients as torch.distributed.all_gather does.
|
| 695 |
+
"""
|
| 696 |
+
|
| 697 |
+
@staticmethod
|
| 698 |
+
def forward(ctx, x):
|
| 699 |
+
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
|
| 700 |
+
dist.all_gather(output, x)
|
| 701 |
+
return tuple(output)
|
| 702 |
+
|
| 703 |
+
@staticmethod
|
| 704 |
+
def backward(ctx, *grads):
|
| 705 |
+
all_gradients = torch.stack(grads)
|
| 706 |
+
dist.all_reduce(all_gradients)
|
| 707 |
+
return all_gradients[dist.get_rank()]
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
def gather_features(
|
| 711 |
+
image_features,
|
| 712 |
+
text_features,
|
| 713 |
+
):
|
| 714 |
+
gathered_image_features = GatherLayer.apply(image_features)
|
| 715 |
+
gathered_text_features = GatherLayer.apply(text_features)
|
| 716 |
+
all_image_features = torch.cat(gathered_image_features)
|
| 717 |
+
all_text_features = torch.cat(gathered_text_features)
|
| 718 |
+
|
| 719 |
+
return all_image_features, all_text_features
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
# The implementation code is modified from open_clip (https://github.com/mlfoundations/open_clip.git)
|
| 723 |
+
class ClipLoss(nn.Module):
|
| 724 |
+
def __init__(
|
| 725 |
+
self,
|
| 726 |
+
cache_labels=False,
|
| 727 |
+
rank=0,
|
| 728 |
+
world_size=1,
|
| 729 |
+
):
|
| 730 |
+
super().__init__()
|
| 731 |
+
self.cache_labels = cache_labels
|
| 732 |
+
self.rank = rank
|
| 733 |
+
self.world_size = world_size
|
| 734 |
+
|
| 735 |
+
# cache state
|
| 736 |
+
self.prev_num_logits = 0
|
| 737 |
+
self.labels = {}
|
| 738 |
+
|
| 739 |
+
def forward(self, image_features, text_features, logit_scale):
|
| 740 |
+
device = image_features.device
|
| 741 |
+
if self.world_size > 1:
|
| 742 |
+
all_image_features, all_text_features = gather_features(image_features, text_features)
|
| 743 |
+
|
| 744 |
+
logits_per_image = logit_scale * image_features @ all_text_features.T
|
| 745 |
+
logits_per_text = logit_scale * text_features @ all_image_features.T
|
| 746 |
+
else:
|
| 747 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
| 748 |
+
logits_per_text = logit_scale * text_features @ image_features.T
|
| 749 |
+
|
| 750 |
+
# calculated ground-truth and cache if enabled
|
| 751 |
+
num_logits = logits_per_image.shape[0]
|
| 752 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
| 753 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
| 754 |
+
if self.world_size > 1:
|
| 755 |
+
labels = labels + num_logits * self.rank
|
| 756 |
+
if self.cache_labels:
|
| 757 |
+
self.labels[device] = labels
|
| 758 |
+
self.prev_num_logits = num_logits
|
| 759 |
+
else:
|
| 760 |
+
labels = self.labels[device]
|
| 761 |
+
|
| 762 |
+
total_loss = (
|
| 763 |
+
F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels)
|
| 764 |
+
) / 2
|
| 765 |
+
return total_loss, logits_per_image, logits_per_text
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
def write_result_to_jsonl(test_stats, result_file):
|
| 769 |
+
with open(result_file, mode="w", encoding="utf-8") as writer:
|
| 770 |
+
writer.write(json.dumps(test_stats, indent=None))
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
def read_result_from_jsonl(result_file):
|
| 774 |
+
with open(result_file, encoding="utf-8") as reader:
|
| 775 |
+
return json.load(reader)
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
class BertCaptioningLoss(nn.Module):
|
| 779 |
+
def __init__(self, label_smoothing, drop_worst_ratio, drop_worst_after):
|
| 780 |
+
super().__init__()
|
| 781 |
+
self.label_smoothing = label_smoothing
|
| 782 |
+
self.drop_worst_ratio = drop_worst_ratio
|
| 783 |
+
self.drop_worst_after = drop_worst_after
|
| 784 |
+
self.log_soft = nn.LogSoftmax(dim=1)
|
| 785 |
+
self.kl = nn.KLDivLoss(reduction='none')
|
| 786 |
+
self.iter = 0
|
| 787 |
+
|
| 788 |
+
def forward(self, logits, target, iter):
|
| 789 |
+
eps = self.label_smoothing
|
| 790 |
+
n_class = logits.size(1)
|
| 791 |
+
one_hot = torch.zeros_like(logits).scatter(1, target.view(-1, 1), 1)
|
| 792 |
+
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
|
| 793 |
+
log_prb = self.log_soft(logits)
|
| 794 |
+
loss = self.kl(log_prb, one_hot).sum(1)
|
| 795 |
+
|
| 796 |
+
if self.drop_worst_ratio > 0 and iter > self.drop_worst_after:
|
| 797 |
+
loss, _ = torch.topk(
|
| 798 |
+
loss, k=int(loss.shape[0] * (1 - self.drop_worst_ratio)), largest=False
|
| 799 |
+
)
|
| 800 |
+
loss = loss.mean()
|
| 801 |
+
|
| 802 |
+
return loss
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
class BeamHypotheses:
|
| 806 |
+
def __init__(self, n_hyp, max_length, length_penalty, early_stopping):
|
| 807 |
+
"""
|
| 808 |
+
Initialize n-best list of hypotheses.
|
| 809 |
+
"""
|
| 810 |
+
self.max_length = max_length - 1 # ignoring bos_token
|
| 811 |
+
self.length_penalty = length_penalty
|
| 812 |
+
self.early_stopping = early_stopping
|
| 813 |
+
self.n_hyp = n_hyp
|
| 814 |
+
self.hyp = []
|
| 815 |
+
self.worst_score = 1e9
|
| 816 |
+
|
| 817 |
+
def __len__(self):
|
| 818 |
+
"""
|
| 819 |
+
Number of hypotheses in the list.
|
| 820 |
+
"""
|
| 821 |
+
return len(self.hyp)
|
| 822 |
+
|
| 823 |
+
def add(self, hyp, sum_logprobs):
|
| 824 |
+
"""
|
| 825 |
+
Add a new hypothesis to the list.
|
| 826 |
+
"""
|
| 827 |
+
score = sum_logprobs / len(hyp) ** self.length_penalty
|
| 828 |
+
if len(self) < self.n_hyp or score > self.worst_score:
|
| 829 |
+
self.hyp.append((score, hyp))
|
| 830 |
+
if len(self) > self.n_hyp:
|
| 831 |
+
sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
|
| 832 |
+
del self.hyp[sorted_scores[0][1]]
|
| 833 |
+
self.worst_score = sorted_scores[1][0]
|
| 834 |
+
else:
|
| 835 |
+
self.worst_score = min(score, self.worst_score)
|
| 836 |
+
|
| 837 |
+
def is_done(self, best_sum_logprobs):
|
| 838 |
+
"""
|
| 839 |
+
If there are enough hypotheses and that none of the hypotheses being generated
|
| 840 |
+
can become better than the worst one in the heap, then we are done with this sentence.
|
| 841 |
+
"""
|
| 842 |
+
if len(self) < self.n_hyp:
|
| 843 |
+
return False
|
| 844 |
+
elif self.early_stopping:
|
| 845 |
+
return True
|
| 846 |
+
else:
|
| 847 |
+
return self.worst_score >= best_sum_logprobs / self.max_length**self.length_penalty
|
| 848 |
+
|
| 849 |
+
|
| 850 |
+
def dump_predictions(args, result, file_suffix):
|
| 851 |
+
global_rank = get_rank()
|
| 852 |
+
jsons = None
|
| 853 |
+
if global_rank >= 0:
|
| 854 |
+
output_file = os.path.join(args.task_cache_path, f"submit_{global_rank}_{file_suffix}.json")
|
| 855 |
+
with open(output_file, "w") as fp:
|
| 856 |
+
json.dump(result, fp, indent=2)
|
| 857 |
+
torch.distributed.barrier()
|
| 858 |
+
|
| 859 |
+
if global_rank == 0:
|
| 860 |
+
world_size = get_world_size()
|
| 861 |
+
jsons = []
|
| 862 |
+
for i in range(world_size):
|
| 863 |
+
each_file = os.path.join(args.task_cache_path, f"submit_{i}_{file_suffix}.json")
|
| 864 |
+
with open(each_file) as fp:
|
| 865 |
+
jsons += json.load(fp)
|
| 866 |
+
|
| 867 |
+
new_jsons = []
|
| 868 |
+
res_dict = dict()
|
| 869 |
+
if args.task in ["coco_captioning", "nocaps"]:
|
| 870 |
+
qid_key = "image_id"
|
| 871 |
+
else:
|
| 872 |
+
# for VQAv2
|
| 873 |
+
qid_key = "question_id"
|
| 874 |
+
for item in jsons:
|
| 875 |
+
if item[qid_key] in res_dict:
|
| 876 |
+
continue
|
| 877 |
+
new_jsons.append(item)
|
| 878 |
+
res_dict[item[qid_key]] = item
|
| 879 |
+
jsons = new_jsons
|
| 880 |
+
|
| 881 |
+
torch.distributed.barrier()
|
| 882 |
+
os.remove(output_file)
|
| 883 |
+
else:
|
| 884 |
+
jsons = result
|
| 885 |
+
|
| 886 |
+
result_file = os.path.join(args.output_dir, f"submit_{file_suffix}.json")
|
| 887 |
+
if jsons is not None:
|
| 888 |
+
with open(result_file, "w") as fp:
|
| 889 |
+
json.dump(jsons, fp, indent=2)
|
| 890 |
+
print("Infer %d examples into %s" % (len(jsons), result_file))
|
| 891 |
+
return result_file
|
src/itr/vlm_model.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import lru_cache
|
| 2 |
+
from typing import Union
|
| 3 |
+
|
| 4 |
+
import clip
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class VisionLanguageModel:
|
| 9 |
+
def __init__(self, model_name: str = "ViT-B/32", device: str = "cuda"):
|
| 10 |
+
self._load_model(model_name, device)
|
| 11 |
+
self.device = device
|
| 12 |
+
|
| 13 |
+
@lru_cache(maxsize=1)
|
| 14 |
+
def _load_model(self, model_name, device: str = "cpu"):
|
| 15 |
+
self.model, self.processor = clip.load(model_name, device=device)
|
| 16 |
+
|
| 17 |
+
def get_embedding(self, input: Union[str, Image.Image]):
|
| 18 |
+
if isinstance(input, str):
|
| 19 |
+
tokens = clip.tokenize(input).to(self.device)
|
| 20 |
+
vector = self.model.encode_text(tokens)
|
| 21 |
+
vector /= vector.norm(dim=-1, keepdim=True)
|
| 22 |
+
vector = vector.cpu().detach().numpy().astype("float32")
|
| 23 |
+
return vector
|
| 24 |
+
elif isinstance(input, Image.Image):
|
| 25 |
+
image_input = self.preprocess(input).unsqueeze(0).to(self.device)
|
| 26 |
+
vector = self.model.encode_image(image_input)
|
| 27 |
+
vector /= vector.norm(dim=-1, keepdim=True)
|
| 28 |
+
vector = vector.cpu().detach().numpy().astype("float32")
|
| 29 |
+
return vector
|
| 30 |
+
else:
|
| 31 |
+
raise Exception("Invalid input type")
|
src/main.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
from config import settings
|
| 4 |
+
from fastapi import FastAPI, Request, status
|
| 5 |
+
from fastapi.exceptions import RequestValidationError
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
+
from fastapi.responses import JSONResponse, RedirectResponse
|
| 8 |
+
from itr.router import init_model, init_vectordb
|
| 9 |
+
from itr.router import router as router
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
app = FastAPI(title="[BeiT-3] Text-to-image Retrieval API")
|
| 13 |
+
|
| 14 |
+
SERVICE_ROOT = Path(__file__).parent.parent
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
app.add_middleware(
|
| 18 |
+
CORSMiddleware,
|
| 19 |
+
allow_origins=settings.CORS_ORIGINS,
|
| 20 |
+
allow_headers=settings.CORS_HEADERS,
|
| 21 |
+
allow_credentials=True,
|
| 22 |
+
allow_methods=["*"],
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@app.exception_handler(RequestValidationError)
|
| 27 |
+
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
| 28 |
+
# Get the original 'detail' list of errors
|
| 29 |
+
details = exc.errors()
|
| 30 |
+
error_details = []
|
| 31 |
+
|
| 32 |
+
for error in details:
|
| 33 |
+
error_details.append({"error": f"{error['msg']} {str(error['loc'])}"})
|
| 34 |
+
return JSONResponse(content={"message": error_details})
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@app.on_event("startup")
|
| 38 |
+
async def startup_event():
|
| 39 |
+
init_vectordb(
|
| 40 |
+
index_file_path=os.path.join(SERVICE_ROOT, settings.INDEX_FILE_PATH),
|
| 41 |
+
index_subframes_file_path=os.path.join(
|
| 42 |
+
SERVICE_ROOT, settings.INDEX_SUBFRAMES_FILE_PATH
|
| 43 |
+
),
|
| 44 |
+
keyframes_groups_json_path=settings.KEYFRAMES_GROUPS_JSON_PATH,
|
| 45 |
+
subframes_groups_json_path=settings.SUBFRAMES_GROUPS_JSON_PATH,
|
| 46 |
+
)
|
| 47 |
+
device = (
|
| 48 |
+
"cuda" if settings.DEVICE == "cuda" and torch.cuda.is_available() else "cpu"
|
| 49 |
+
)
|
| 50 |
+
init_model(device=device)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@app.get("/", include_in_schema=False)
|
| 54 |
+
async def root() -> None:
|
| 55 |
+
return RedirectResponse("/docs")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@app.get("/health", status_code=status.HTTP_200_OK, tags=["health"])
|
| 59 |
+
async def perform_healthcheck() -> None:
|
| 60 |
+
return JSONResponse(content={"message": "success"})
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
app.include_router(router)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Start API
|
| 67 |
+
if __name__ == "__main__":
|
| 68 |
+
print(os.listdir(os.path.join(SERVICE_ROOT, "data/faiss-index/")))
|
| 69 |
+
import uvicorn
|
| 70 |
+
|
| 71 |
+
uvicorn.run("main:app", host=settings.HOST, port=settings.PORT, reload=True)
|