huckiyang commited on
Commit
8b9c170
·
1 Parent(s): d18c3a8

[node] estimation

Browse files
Files changed (3) hide show
  1. README.md +131 -1
  2. app.py +361 -0
  3. requirements.txt +13 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Tp 1 Dgx Node Estimator
3
- emoji: 🐠
4
  colorFrom: purple
5
  colorTo: yellow
6
  sdk: gradio
@@ -12,3 +12,133 @@ short_description: for NVIDIA TRDC estimation
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Tp 1 Dgx Node Estimator
3
+ emoji: ⚙️
4
  colorFrom: purple
5
  colorTo: yellow
6
  sdk: gradio
 
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
15
+
16
+ # 🚀 H100 Node & CUDA Version Estimator
17
+
18
+ An interactive Gradio application for estimating H100 GPU node requirements and CUDA version recommendations based on your machine learning workload specifications.
19
+
20
+ ## Features
21
+
22
+ - **Model Support**: Supports popular models including LLaMA-2/3/3.1, Nemotron-4, and Qwen2/2.5 variants
23
+ - **Smart Estimation**: Calculates memory requirements including model weights, KV cache, and operational overhead
24
+ - **Use Case Optimization**: Provides different estimates for inference, training, and fine-tuning scenarios
25
+ - **Precision Support**: Handles different precision formats (FP32, FP16, BF16, INT8, INT4)
26
+ - **Interactive Visualizations**: Memory breakdown charts and node utilization graphs
27
+ - **CUDA Recommendations**: Suggests optimal CUDA versions and driver requirements
28
+
29
+ ## Installation
30
+
31
+ 1. Clone the repository:
32
+ ```bash
33
+ git clone <repository-url>
34
+ cd tp-1-dgx-node-estimator
35
+ ```
36
+
37
+ 2. Install dependencies:
38
+ ```bash
39
+ pip install -r requirements.txt
40
+ ```
41
+
42
+ ## Usage
43
+
44
+ 1. Run the application:
45
+ ```bash
46
+ python app.py
47
+ ```
48
+
49
+ 2. Open your browser and navigate to `http://localhost:7860`
50
+
51
+ 3. Configure your parameters:
52
+ - **Model**: Select from supported models (LLaMA, Nemotron, Qwen2)
53
+ - **Input Tokens**: Number of input tokens per request
54
+ - **Output Tokens**: Number of output tokens per request
55
+ - **Batch Size**: Number of concurrent requests
56
+ - **Use Case**: Choose between inference, training, or fine-tuning
57
+ - **Precision**: Select model precision/quantization level
58
+
59
+ 4. Click "💡 Estimate Requirements" to get your recommendations
60
+
61
+ ## Key Calculations
62
+
63
+ ### Memory Estimation
64
+ - **Model Memory**: Base model weights adjusted for precision
65
+ - **KV Cache**: Calculated based on sequence length and model architecture
66
+ - **Overhead**: Use-case specific multipliers:
67
+ - Inference: 1.2x (20% overhead)
68
+ - Training: 3.0x (gradients + optimizer states)
69
+ - Fine-tuning: 2.5x (moderate overhead)
70
+
71
+ ### Node Calculation
72
+ - **H100 Memory**: 80GB HBM3 per GPU (90% usable)
73
+ - **Model Parallelism**: Automatic consideration for large models
74
+ - **Memory Efficiency**: Optimal distribution across nodes
75
+
76
+ ## Example Scenarios
77
+
78
+ | Model | Tokens (In/Out) | Batch Size | Use Case | Precision | Estimated Nodes |
79
+ |-------|----------------|------------|----------|-----------|----------------|
80
+ | LLaMA-3-8B | 2048/512 | 1 | Inference | FP16 | 1 |
81
+ | LLaMA-3-70B | 4096/1024 | 4 | Inference | FP16 | 3-4 |
82
+ | Qwen2.5-72B | 8192/2048 | 2 | Fine-tuning | BF16 | 4-5 |
83
+ | Nemotron-4-340B | 2048/1024 | 1 | Inference | INT8 | 6-8 |
84
+
85
+ ## CUDA Recommendations
86
+
87
+ The application provides tailored CUDA version recommendations:
88
+
89
+ - **Optimal**: CUDA 12.4 + cuDNN 8.9+
90
+ - **Recommended**: CUDA 12.1+ + cuDNN 8.7+
91
+ - **Minimum**: CUDA 11.8 + cuDNN 8.5+
92
+
93
+ ## Output Features
94
+
95
+ ### 📊 Detailed Analysis
96
+ - Complete memory breakdown
97
+ - Parameter counts and model specifications
98
+ - Step-by-step calculation explanation
99
+
100
+ ### 🔧 CUDA Recommendations
101
+ - Version compatibility matrix
102
+ - Driver requirements
103
+ - Compute capability information
104
+
105
+ ### 📈 Memory Utilization
106
+ - Visual memory breakdown (pie chart)
107
+ - Node utilization distribution (bar chart)
108
+ - Efficiency metrics
109
+
110
+ ## Technical Details
111
+
112
+ ### Supported Models
113
+ - **LLaMA**: 2-7B, 2-13B, 2-70B, 3-8B, 3-70B, 3.1-8B, 3.1-70B, 3.1-405B
114
+ - **Nemotron**: 4-15B, 4-340B
115
+ - **Qwen2**: 0.5B, 1.5B, 7B, 72B
116
+ - **Qwen2.5**: 0.5B, 1.5B, 7B, 14B, 32B, 72B
117
+
118
+ ### Precision Impact
119
+ - **FP32**: Full precision (4 bytes per parameter)
120
+ - **FP16/BF16**: Half precision (2 bytes per parameter)
121
+ - **INT8**: 8-bit quantization (1 byte per parameter)
122
+ - **INT4**: 4-bit quantization (0.5 bytes per parameter)
123
+
124
+ ## Limitations
125
+
126
+ - Estimates are approximate and may vary based on:
127
+ - Specific model implementation details
128
+ - Framework overhead (PyTorch, TensorFlow, etc.)
129
+ - Hardware configuration
130
+ - Network topology for multi-node setups
131
+
132
+ ## Contributing
133
+
134
+ Feel free to submit issues and enhancement requests!
135
+
136
+ ## License
137
+
138
+ This project is licensed under the MIT License - see the LICENSE file for details.
139
+
140
+ ## Notes
141
+
142
+ - For production deployments, consider adding a 10-20% buffer to estimates
143
+ - Network bandwidth and storage requirements are not included in calculations
144
+ - Estimates assume optimal memory layout and efficient implementations
app.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ import json
6
+ from typing import Dict, Tuple, List
7
+
8
+ # Model specifications (approximate parameter counts and memory requirements)
9
+ MODEL_SPECS = {
10
+ "LLaMA-2-7B": {"params": 7e9, "base_memory_gb": 14},
11
+ "LLaMA-2-13B": {"params": 13e9, "base_memory_gb": 26},
12
+ "LLaMA-2-70B": {"params": 70e9, "base_memory_gb": 140},
13
+ "LLaMA-3-8B": {"params": 8e9, "base_memory_gb": 16},
14
+ "LLaMA-3-70B": {"params": 70e9, "base_memory_gb": 140},
15
+ "LLaMA-3.1-8B": {"params": 8e9, "base_memory_gb": 16},
16
+ "LLaMA-3.1-70B": {"params": 70e9, "base_memory_gb": 140},
17
+ "LLaMA-3.1-405B": {"params": 405e9, "base_memory_gb": 810},
18
+ "Nemotron-4-340B": {"params": 340e9, "base_memory_gb": 680},
19
+ "Nemotron-4-15B": {"params": 15e9, "base_memory_gb": 30},
20
+ "Qwen2-0.5B": {"params": 0.5e9, "base_memory_gb": 1},
21
+ "Qwen2-1.5B": {"params": 1.5e9, "base_memory_gb": 3},
22
+ "Qwen2-7B": {"params": 7e9, "base_memory_gb": 14},
23
+ "Qwen2-72B": {"params": 72e9, "base_memory_gb": 144},
24
+ "Qwen2.5-0.5B": {"params": 0.5e9, "base_memory_gb": 1},
25
+ "Qwen2.5-1.5B": {"params": 1.5e9, "base_memory_gb": 3},
26
+ "Qwen2.5-7B": {"params": 7e9, "base_memory_gb": 14},
27
+ "Qwen2.5-14B": {"params": 14e9, "base_memory_gb": 28},
28
+ "Qwen2.5-32B": {"params": 32e9, "base_memory_gb": 64},
29
+ "Qwen2.5-72B": {"params": 72e9, "base_memory_gb": 144},
30
+ }
31
+
32
+ # H100 specifications
33
+ H100_MEMORY_GB = 80
34
+ H100_COMPUTE_CAPABILITY = "9.0"
35
+
36
+ # CUDA version recommendations based on model and use case
37
+ CUDA_RECOMMENDATIONS = {
38
+ "inference": {
39
+ "recommended": "12.1+",
40
+ "minimum": "11.8",
41
+ "optimal": "12.4"
42
+ },
43
+ "training": {
44
+ "recommended": "12.1+",
45
+ "minimum": "11.8",
46
+ "optimal": "12.4"
47
+ },
48
+ "fine_tuning": {
49
+ "recommended": "12.1+",
50
+ "minimum": "11.8",
51
+ "optimal": "12.4"
52
+ }
53
+ }
54
+
55
+ def calculate_kv_cache_memory(num_tokens: int, model_params: float, num_layers: int = None) -> float:
56
+ """Calculate KV cache memory requirements in GB"""
57
+ if num_layers is None:
58
+ # Estimate layers based on model size
59
+ if model_params < 1e9:
60
+ num_layers = 24
61
+ elif model_params < 10e9:
62
+ num_layers = 32
63
+ elif model_params < 100e9:
64
+ num_layers = 80
65
+ else:
66
+ num_layers = 96
67
+
68
+ # KV cache memory per token (approximate)
69
+ # 2 (K + V) * 2 (fp16) * hidden_dim * num_layers
70
+ hidden_dim = int((model_params / (num_layers * 4)) ** 0.5) * 64 # Rough estimate
71
+ kv_memory_per_token = 2 * 2 * hidden_dim * num_layers / (1024**3) # GB
72
+
73
+ return num_tokens * kv_memory_per_token
74
+
75
+ def estimate_h100_nodes(
76
+ model_name: str,
77
+ input_tokens: int,
78
+ output_tokens: int,
79
+ batch_size: int,
80
+ use_case: str,
81
+ precision: str
82
+ ) -> Tuple[int, str, Dict]:
83
+ """
84
+ Estimate the number of H100 nodes required
85
+
86
+ Returns:
87
+ - Number of nodes required
88
+ - Detailed explanation
89
+ - Dictionary with breakdown
90
+ """
91
+
92
+ if model_name not in MODEL_SPECS:
93
+ return 1, f"Model {model_name} not found in specifications", {}
94
+
95
+ model_spec = MODEL_SPECS[model_name]
96
+ base_memory = model_spec["base_memory_gb"]
97
+
98
+ # Adjust memory based on precision
99
+ precision_multiplier = {
100
+ "FP32": 1.0,
101
+ "FP16": 0.5,
102
+ "BF16": 0.5,
103
+ "INT8": 0.25,
104
+ "INT4": 0.125
105
+ }
106
+
107
+ model_memory = base_memory * precision_multiplier.get(precision, 0.5)
108
+
109
+ # Calculate KV cache memory
110
+ total_tokens = input_tokens + output_tokens
111
+ kv_cache_memory = calculate_kv_cache_memory(total_tokens, model_spec["params"]) * batch_size
112
+
113
+ # Use case specific memory overhead
114
+ overhead_multiplier = {
115
+ "inference": 1.2, # 20% overhead
116
+ "training": 3.0, # 3x for gradients, optimizer states
117
+ "fine_tuning": 2.5 # 2.5x for fine-tuning
118
+ }
119
+
120
+ total_memory_per_instance = (model_memory + kv_cache_memory) * overhead_multiplier.get(use_case, 1.2)
121
+
122
+ # Calculate nodes needed
123
+ memory_per_node = H100_MEMORY_GB * 0.9 # Reserve 10% for system
124
+ nodes_needed = max(1, int(np.ceil(total_memory_per_instance / memory_per_node)))
125
+
126
+ # For very large models, consider model parallelism
127
+ if model_memory > memory_per_node:
128
+ min_nodes_for_model = int(np.ceil(model_memory / memory_per_node))
129
+ nodes_needed = max(nodes_needed, min_nodes_for_model)
130
+
131
+ # Generate explanation
132
+ explanation = f"""
133
+ **Estimation Breakdown:**
134
+
135
+ • **Model**: {model_name} ({model_spec['params']/1e9:.1f}B parameters)
136
+ • **Precision**: {precision}
137
+ • **Model Memory**: {model_memory:.1f} GB
138
+ • **KV Cache Memory**: {kv_cache_memory:.1f} GB (for {total_tokens:,} tokens × {batch_size} batch size)
139
+ • **Use Case Overhead**: {overhead_multiplier.get(use_case, 1.2):.1f}x ({use_case})
140
+ • **Total Memory Required**: {total_memory_per_instance:.1f} GB
141
+ • **H100 Usable Memory**: {memory_per_node:.1f} GB per node
142
+
143
+ **Recommendation**: {nodes_needed} H100 node(s)
144
+ """
145
+
146
+ breakdown = {
147
+ "model_memory_gb": model_memory,
148
+ "kv_cache_memory_gb": kv_cache_memory,
149
+ "total_memory_gb": total_memory_per_instance,
150
+ "h100_memory_per_node_gb": memory_per_node,
151
+ "nodes_required": nodes_needed
152
+ }
153
+
154
+ return nodes_needed, explanation, breakdown
155
+
156
+ def get_cuda_recommendation(use_case: str) -> str:
157
+ """Get CUDA version recommendation based on use case"""
158
+ cuda_info = CUDA_RECOMMENDATIONS.get(use_case, CUDA_RECOMMENDATIONS["inference"])
159
+
160
+ recommendation = f"""
161
+ **CUDA Version Recommendations for {use_case.title()}:**
162
+
163
+ • **Optimal**: CUDA {cuda_info['optimal']} + cuDNN 8.9+
164
+ • **Recommended**: CUDA {cuda_info['recommended']} + cuDNN 8.7+
165
+ • **Minimum**: CUDA {cuda_info['minimum']} + cuDNN 8.5+
166
+
167
+ **Additional Requirements:**
168
+ • **Driver Version**: 525.60.13+ (Linux) / 527.41+ (Windows)
169
+ • **Compute Capability**: {H100_COMPUTE_CAPABILITY} (H100 native)
170
+ • **Memory**: ECC enabled recommended for production
171
+ """
172
+
173
+ return recommendation
174
+
175
+ def create_performance_chart(breakdown: Dict) -> plt.Figure:
176
+ """Create a memory utilization chart"""
177
+ if not breakdown:
178
+ fig, ax = plt.subplots(figsize=(8, 6))
179
+ ax.text(0.5, 0.5, 'No data to display', ha='center', va='center')
180
+ ax.set_xlim(0, 1)
181
+ ax.set_ylim(0, 1)
182
+ return fig
183
+
184
+ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
185
+
186
+ # Memory breakdown pie chart
187
+ labels = ['Model Memory', 'KV Cache', 'Overhead']
188
+ model_mem = breakdown['model_memory_gb']
189
+ kv_mem = breakdown['kv_cache_memory_gb']
190
+ overhead_mem = breakdown['total_memory_gb'] - model_mem - kv_mem
191
+ sizes = [model_mem, kv_mem, overhead_mem]
192
+
193
+ colors = ['#ff9999', '#66b3ff', '#99ff99']
194
+ ax1.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
195
+ ax1.set_title('Memory Breakdown')
196
+
197
+ # Node utilization bar chart
198
+ nodes = breakdown['nodes_required']
199
+ total_memory = breakdown['total_memory_gb']
200
+ memory_per_node = breakdown['h100_memory_per_node_gb']
201
+
202
+ node_labels = [f'Node {i+1}' for i in range(nodes)]
203
+ utilization = []
204
+
205
+ for i in range(nodes):
206
+ if i < nodes - 1:
207
+ utilization.append(memory_per_node)
208
+ else:
209
+ remaining_memory = total_memory - (nodes - 1) * memory_per_node
210
+ utilization.append(remaining_memory)
211
+
212
+ utilization_pct = [u / memory_per_node * 100 for u in utilization]
213
+
214
+ bars = ax2.bar(node_labels, utilization_pct, color='skyblue', alpha=0.7)
215
+ ax2.axhline(y=100, color='red', linestyle='--', alpha=0.7, label='Max Capacity')
216
+ ax2.set_ylabel('Memory Utilization (%)')
217
+ ax2.set_title('H100 Node Memory Utilization')
218
+ ax2.set_ylim(0, 110)
219
+ ax2.legend()
220
+
221
+ # Add value labels on bars
222
+ for bar, pct in zip(bars, utilization_pct):
223
+ ax2.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 1,
224
+ f'{pct:.1f}%', ha='center', va='bottom')
225
+
226
+ plt.tight_layout()
227
+ return fig
228
+
229
+ def estimate_nodes_interface(
230
+ model_name: str,
231
+ input_tokens: int,
232
+ output_tokens: int,
233
+ batch_size: int,
234
+ use_case: str,
235
+ precision: str
236
+ ):
237
+ """Main interface function"""
238
+
239
+ # Validate inputs
240
+ if input_tokens <= 0 or output_tokens <= 0:
241
+ return "Please enter valid token counts (> 0)", "", None, ""
242
+
243
+ if batch_size <= 0:
244
+ return "Please enter a valid batch size (> 0)", "", None, ""
245
+
246
+ # Calculate node requirements
247
+ nodes_needed, explanation, breakdown = estimate_h100_nodes(
248
+ model_name, input_tokens, output_tokens, batch_size, use_case, precision
249
+ )
250
+
251
+ # Get CUDA recommendations
252
+ cuda_rec = get_cuda_recommendation(use_case)
253
+
254
+ # Create performance chart
255
+ fig = create_performance_chart(breakdown)
256
+
257
+ return explanation, cuda_rec, fig, f"**Estimated H100 Nodes Required: {nodes_needed}**"
258
+
259
+ # Create Gradio interface
260
+ def create_interface():
261
+ with gr.Blocks(title="H100 Node Estimator", theme=gr.themes.Soft()) as demo:
262
+ gr.Markdown("# 🚀 H100 Node & CUDA Version Estimator")
263
+ gr.Markdown("Get recommendations for H100 node count and CUDA version based on your model and workload requirements.")
264
+
265
+ with gr.Row():
266
+ with gr.Column(scale=1):
267
+ gr.Markdown("## Input Parameters")
268
+
269
+ model_dropdown = gr.Dropdown(
270
+ choices=list(MODEL_SPECS.keys()),
271
+ value="LLaMA-3-8B",
272
+ label="Model",
273
+ info="Select the model you want to run"
274
+ )
275
+
276
+ input_tokens = gr.Number(
277
+ value=2048,
278
+ label="Input Tokens",
279
+ info="Number of input tokens per request"
280
+ )
281
+
282
+ output_tokens = gr.Number(
283
+ value=512,
284
+ label="Output Tokens",
285
+ info="Number of output tokens per request"
286
+ )
287
+
288
+ batch_size = gr.Number(
289
+ value=1,
290
+ label="Batch Size",
291
+ info="Number of concurrent requests"
292
+ )
293
+
294
+ use_case = gr.Dropdown(
295
+ choices=["inference", "training", "fine_tuning"],
296
+ value="inference",
297
+ label="Use Case",
298
+ info="What will you use the model for?"
299
+ )
300
+
301
+ precision = gr.Dropdown(
302
+ choices=["FP32", "FP16", "BF16", "INT8", "INT4"],
303
+ value="FP16",
304
+ label="Precision",
305
+ info="Model precision/quantization"
306
+ )
307
+
308
+ estimate_btn = gr.Button("💡 Estimate Requirements", variant="primary")
309
+
310
+ with gr.Column(scale=2):
311
+ gr.Markdown("## Results")
312
+
313
+ node_count = gr.Markdown("**Ready to estimate...**")
314
+
315
+ with gr.Tab("📊 Detailed Analysis"):
316
+ detailed_output = gr.Markdown()
317
+
318
+ with gr.Tab("🔧 CUDA Recommendations"):
319
+ cuda_output = gr.Markdown()
320
+
321
+ with gr.Tab("📈 Memory Utilization"):
322
+ chart_output = gr.Plot()
323
+
324
+ # Connect the interface
325
+ estimate_btn.click(
326
+ fn=estimate_nodes_interface,
327
+ inputs=[model_dropdown, input_tokens, output_tokens, batch_size, use_case, precision],
328
+ outputs=[detailed_output, cuda_output, chart_output, node_count]
329
+ )
330
+
331
+ # Add examples
332
+ gr.Markdown("## 💡 Example Scenarios")
333
+
334
+ examples = [
335
+ ["LLaMA-3-8B", 2048, 512, 1, "inference", "FP16"],
336
+ ["LLaMA-3-70B", 4096, 1024, 4, "inference", "FP16"],
337
+ ["Qwen2.5-72B", 8192, 2048, 2, "fine_tuning", "BF16"],
338
+ ["Nemotron-4-340B", 2048, 1024, 1, "inference", "INT8"],
339
+ ]
340
+
341
+ gr.Examples(
342
+ examples=examples,
343
+ inputs=[model_dropdown, input_tokens, output_tokens, batch_size, use_case, precision],
344
+ outputs=[detailed_output, cuda_output, chart_output, node_count],
345
+ fn=estimate_nodes_interface,
346
+ cache_examples=False
347
+ )
348
+
349
+ gr.Markdown("""
350
+ ## ℹ️ Notes
351
+ - Estimates are approximate and may vary based on actual implementation details
352
+ - Memory calculations include model weights, KV cache, and operational overhead
353
+ - Consider network bandwidth and storage requirements for multi-node setups
354
+ - For production deployments, add 10-20% buffer for optimal performance
355
+ """)
356
+
357
+ return demo
358
+
359
+ if __name__ == "__main__":
360
+ demo = create_interface()
361
+ demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler
2
+ black
3
+ datasets
4
+ gradio>=4.0.0
5
+ gradio[oauth]
6
+ gradio_leaderboard==0.0.13
7
+ gradio_client
8
+ huggingface-hub>=0.18.0
9
+ matplotlib>=3.6.0
10
+ numpy>=1.24.0
11
+ pandas>=1.5.0
12
+ python-dateutil
13
+ tqdm