Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,895 Bytes
e19aac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
os.environ["GRADIO_SSR_MODE"] = "false"
if not os.path.exists("checkpoints"):
os.makedirs("checkpoints")
os.system("pip install gdown")
os.system("gdown https://drive.google.com/uc?id=1eQe6blJcyI7oy78C8ozwj1IUkbkFEItf; unzip -o dam_3b_v1.zip -d checkpoints")
from segment_anything import sam_model_registry, SamPredictor
import gradio as gr
import numpy as np
import cv2
import base64
import torch
from PIL import Image
import io
import argparse
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from transformers import SamModel, SamProcessor
from dam import DescribeAnythingModel, disable_torch_init
try:
from spaces import GPU
except ImportError:
print("Spaces not installed, using dummy GPU decorator")
GPU = lambda fn: fn
# Load SAM model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
@GPU(duration=75)
def image_to_sam_embedding(base64_image):
try:
# Decode base64 string to bytes
image_bytes = base64.b64decode(base64_image)
# Convert bytes to PIL Image
image = Image.open(io.BytesIO(image_bytes))
# Process image with SAM processor
inputs = sam_processor(image, return_tensors="pt").to(device)
# Get image embedding
with torch.no_grad():
image_embedding = sam_model.get_image_embeddings(inputs["pixel_values"])
# Convert to CPU and numpy
image_embedding = image_embedding.cpu().numpy()
# Encode the embedding as base64
embedding_bytes = image_embedding.tobytes()
embedding_base64 = base64.b64encode(embedding_bytes).decode('utf-8')
return embedding_base64
except Exception as e:
print(f"Error processing image: {str(e)}")
raise gr.Error(f"Failed to process image: {str(e)}")
@GPU(duration=75)
def describe(image_base64: str, mask_base64: str, query: str):
# Convert base64 to PIL Image
image_bytes = base64.b64decode(image_base64.split(',')[1] if ',' in image_base64 else image_base64)
img = Image.open(io.BytesIO(image_bytes))
mask_bytes = base64.b64decode(mask_base64.split(',')[1] if ',' in mask_base64 else mask_base64)
mask = Image.open(io.BytesIO(mask_bytes))
# Process the mask
mask = Image.fromarray((np.array(mask.convert('L')) > 0).astype(np.uint8) * 255)
# Get description using DAM with streaming
description_generator = dam.get_description(img, mask, query, streaming=True)
# Stream the tokens
text = ""
for token in description_generator:
text += token
yield text
@GPU(duration=75)
def describe_without_streaming(image_base64: str, mask_base64: str, query: str):
# Convert base64 to PIL Image
image_bytes = base64.b64decode(image_base64.split(',')[1] if ',' in image_base64 else image_base64)
img = Image.open(io.BytesIO(image_bytes))
mask_bytes = base64.b64decode(mask_base64.split(',')[1] if ',' in mask_base64 else mask_base64)
mask = Image.open(io.BytesIO(mask_bytes))
# Process the mask
mask = Image.fromarray((np.array(mask.convert('L')) > 0).astype(np.uint8) * 255)
# Get description using DAM
description = dam.get_description(img, mask, query)
return description
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Describe Anything gradio demo")
parser.add_argument("--model-path", type=str, default="checkpoints/dam_3b_v1", help="Path to the model checkpoint")
parser.add_argument("--prompt-mode", type=str, default="full+focal_crop", help="Prompt mode")
parser.add_argument("--conv-mode", type=str, default="v1", help="Conversation mode")
parser.add_argument("--temperature", type=float, default=0.2, help="Sampling temperature")
parser.add_argument("--top_p", type=float, default=0.5, help="Top-p for sampling")
args = parser.parse_args()
# Initialize DAM model
disable_torch_init()
dam = DescribeAnythingModel(
model_path=args.model_path,
conv_mode=args.conv_mode,
prompt_mode=args.prompt_mode,
temperature=args.temperature,
top_p=args.top_p,
num_beams=1,
max_new_tokens=512,
).to(device)
# Create Gradio interface
with gr.Blocks() as demo:
gr.Interface(
fn=image_to_sam_embedding,
inputs=gr.Textbox(label="Image Base64"),
outputs=gr.Textbox(label="Embedding Base64"),
title="Image Embedding Generator",
api_name="image_to_sam_embedding"
)
gr.Interface(
fn=describe,
inputs=[
gr.Textbox(label="Image Base64"),
gr.Text(label="Mask Base64"),
gr.Text(label="Prompt")
],
outputs=[
gr.Text(label="Description")
],
title="Mask Description Generator",
api_name="describe"
)
gr.Interface(
fn=describe_without_streaming,
inputs=[
gr.Textbox(label="Image Base64"),
gr.Text(label="Mask Base64"),
gr.Text(label="Prompt")
],
outputs=[
gr.Text(label="Description")
],
title="Mask Description Generator (Non-Streaming)",
api_name="describe_without_streaming"
)
demo._block_thread = demo.block_thread
demo.block_thread = lambda: None
demo.launch()
for route in demo.app.routes:
if route.path == "/":
demo.app.routes.remove(route)
demo.app.mount("/", StaticFiles(directory="dist", html=True), name="demo")
demo._block_thread()
|