Spaces:
Running
on
Zero
Running
on
Zero
nithinraok
commited on
Commit
·
41fce2e
1
Parent(s):
c2d1a8a
SRT and cosmetics
Browse filesSigned-off-by: nithinraok <[email protected]>
app.py
CHANGED
@@ -10,6 +10,7 @@ import numpy as np
|
|
10 |
import os
|
11 |
import gradio.themes as gr_themes
|
12 |
import csv
|
|
|
13 |
from supported_languages import SUPPORTED_LANGS_MAP
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -24,6 +25,34 @@ AVAILABLE_TGT_LANGS = list(SUPPORTED_LANGS_MAP.keys())
|
|
24 |
DEFAULT_TGT_LANG = "English"
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def start_session(request: gr.Request):
|
28 |
session_hash = request.session_hash
|
29 |
session_dir = Path(f'/tmp/{session_hash}')
|
@@ -100,16 +129,21 @@ def get_audio_segment(audio_path, start_second, end_second):
|
|
100 |
def get_transcripts_and_raw_times(audio_path, session_dir, source_lang, target_lang):
|
101 |
if not audio_path:
|
102 |
gr.Error("No audio file path provided for transcription.", duration=None)
|
103 |
-
# Return an update to hide the
|
104 |
-
return [], [], None, gr.DownloadButton(visible=False)
|
105 |
|
106 |
vis_data = [["N/A", "N/A", "Processing failed"]]
|
107 |
raw_times_data = [[0.0, 0.0]]
|
108 |
processed_audio_path = None
|
109 |
csv_file_path = None
|
|
|
110 |
original_path_name = Path(audio_path).name
|
111 |
audio_name = Path(audio_path).stem
|
112 |
|
|
|
|
|
|
|
|
|
113 |
try:
|
114 |
try:
|
115 |
gr.Info(f"Loading audio: {original_path_name}", duration=2)
|
@@ -117,8 +151,7 @@ def get_transcripts_and_raw_times(audio_path, session_dir, source_lang, target_l
|
|
117 |
print('Audio loaded successfully')
|
118 |
except Exception as load_e:
|
119 |
gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None)
|
120 |
-
|
121 |
-
return [["Error", "Error", "Load failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
122 |
|
123 |
resampled = False
|
124 |
mono = False
|
@@ -130,8 +163,7 @@ def get_transcripts_and_raw_times(audio_path, session_dir, source_lang, target_l
|
|
130 |
resampled = True
|
131 |
except Exception as resample_e:
|
132 |
gr.Error(f"Failed to resample audio: {resample_e}", duration=None)
|
133 |
-
|
134 |
-
return [["Error", "Error", "Resample failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
135 |
|
136 |
if audio.channels == 2:
|
137 |
try:
|
@@ -139,12 +171,10 @@ def get_transcripts_and_raw_times(audio_path, session_dir, source_lang, target_l
|
|
139 |
mono = True
|
140 |
except Exception as mono_e:
|
141 |
gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None)
|
142 |
-
|
143 |
-
return [["Error", "Error", "Mono conversion failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
144 |
elif audio.channels > 2:
|
145 |
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
|
146 |
-
|
147 |
-
return [["Error", "Error", f"{audio.channels}-channel audio not supported"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
148 |
|
149 |
if resampled or mono:
|
150 |
try:
|
@@ -156,68 +186,77 @@ def get_transcripts_and_raw_times(audio_path, session_dir, source_lang, target_l
|
|
156 |
gr.Error(f"Failed to export processed audio: {export_e}", duration=None)
|
157 |
if processed_audio_path and os.path.exists(processed_audio_path):
|
158 |
os.remove(processed_audio_path)
|
159 |
-
|
160 |
-
return [["Error", "Error", "Export failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
161 |
else:
|
162 |
transcribe_path = audio_path
|
163 |
info_path_name = original_path_name
|
164 |
|
165 |
try:
|
166 |
model.to(device)
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
168 |
output = model.transcribe([transcribe_path], timestamps=True, source_lang=SUPPORTED_LANGS_MAP[source_lang], target_lang=SUPPORTED_LANGS_MAP[target_lang])
|
169 |
|
170 |
if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp:
|
171 |
-
gr.Error("
|
172 |
-
|
173 |
-
return [["Error", "Error", "Transcription Format Issue"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
174 |
|
175 |
segment_timestamps = output[0].timestamp['segment']
|
176 |
csv_headers = ["Start (s)", "End (s)", "Segment"]
|
177 |
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps]
|
178 |
raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps]
|
179 |
|
180 |
-
#
|
181 |
-
button_update = gr.DownloadButton(visible=False)
|
182 |
try:
|
183 |
-
csv_file_path = Path(session_dir, f"
|
184 |
writer = csv.writer(open(csv_file_path, 'w'))
|
185 |
writer.writerow(csv_headers)
|
186 |
writer.writerows(vis_data)
|
187 |
print(f"CSV transcript saved to temporary file: {csv_file_path}")
|
188 |
-
|
189 |
-
button_update = gr.DownloadButton(value=csv_file_path, visible=True)
|
190 |
except Exception as csv_e:
|
191 |
gr.Error(f"Failed to create transcript CSV file: {csv_e}", duration=None)
|
192 |
print(f"Error writing CSV: {csv_e}")
|
193 |
-
# csv_file_path remains None, button_update remains hidden
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
except torch.cuda.OutOfMemoryError as e:
|
200 |
error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.'
|
201 |
print(f"CUDA OutOfMemoryError: {e}")
|
202 |
gr.Error(error_msg, duration=None)
|
203 |
-
|
204 |
-
return [["OOM", "OOM", error_msg]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
205 |
|
206 |
except FileNotFoundError:
|
207 |
error_msg = f"Audio file for transcription not found: {Path(transcribe_path).name}."
|
208 |
print(f"Error: Transcribe audio file not found at path: {transcribe_path}")
|
209 |
gr.Error(error_msg, duration=None)
|
210 |
-
|
211 |
-
return [["Error", "Error", "File not found for transcription"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False)
|
212 |
|
213 |
except Exception as e:
|
214 |
-
error_msg = f"
|
215 |
-
print(f"Error during
|
216 |
gr.Error(error_msg, duration=None)
|
217 |
vis_data = [["Error", "Error", error_msg]]
|
218 |
raw_times_data = [[0.0, 0.0]]
|
219 |
-
|
220 |
-
return vis_data, raw_times_data, audio_path, gr.DownloadButton(visible=False)
|
221 |
finally:
|
222 |
try:
|
223 |
if 'model' in locals() and hasattr(model, 'cpu'):
|
@@ -354,14 +393,16 @@ with gr.Blocks(theme=nvidia_theme) as demo:
|
|
354 |
gr.Markdown("---")
|
355 |
gr.HTML("<h3 style='text-align: center'>Ready to dive in? Click on the text to jump to the part you need!</h3>")
|
356 |
|
357 |
-
# Define the
|
358 |
-
|
|
|
|
|
359 |
|
360 |
vis_timestamps_df = gr.DataFrame(
|
361 |
headers=["Start (s)", "End (s)", "Segment"],
|
362 |
datatype=["number", "number", "str"],
|
363 |
wrap=True,
|
364 |
-
label="
|
365 |
)
|
366 |
|
367 |
# selected_segment_player was defined after download_btn previously, keep it after df for layout
|
@@ -382,14 +423,14 @@ with gr.Blocks(theme=nvidia_theme) as demo:
|
|
382 |
mic_transcribe_btn.click(
|
383 |
fn=get_transcripts_and_raw_times,
|
384 |
inputs=[mic_input, session_dir, source_lang_dropdown, target_lang_dropdown],
|
385 |
-
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state,
|
386 |
api_name="transcribe_mic"
|
387 |
)
|
388 |
|
389 |
file_transcribe_btn.click(
|
390 |
fn=get_transcripts_and_raw_times,
|
391 |
inputs=[file_input, session_dir, source_lang_dropdown, target_lang_dropdown],
|
392 |
-
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state,
|
393 |
api_name="transcribe_file"
|
394 |
)
|
395 |
|
|
|
10 |
import os
|
11 |
import gradio.themes as gr_themes
|
12 |
import csv
|
13 |
+
import datetime
|
14 |
from supported_languages import SUPPORTED_LANGS_MAP
|
15 |
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
25 |
DEFAULT_TGT_LANG = "English"
|
26 |
|
27 |
|
28 |
+
def format_srt_time(seconds: float) -> str:
|
29 |
+
"""Converts seconds to SRT time format HH:MM:SS,mmm using datetime.timedelta"""
|
30 |
+
sanitized_total_seconds = max(0.0, seconds)
|
31 |
+
delta = datetime.timedelta(seconds=sanitized_total_seconds)
|
32 |
+
total_int_seconds = int(delta.total_seconds())
|
33 |
+
|
34 |
+
hours = total_int_seconds // 3600
|
35 |
+
remainder_seconds_after_hours = total_int_seconds % 3600
|
36 |
+
minutes = remainder_seconds_after_hours // 60
|
37 |
+
seconds_part = remainder_seconds_after_hours % 60
|
38 |
+
milliseconds = delta.microseconds // 1000
|
39 |
+
|
40 |
+
return f"{hours:02d}:{minutes:02d}:{seconds_part:02d},{milliseconds:03d}"
|
41 |
+
|
42 |
+
def generate_srt_content(segment_timestamps: list) -> str:
|
43 |
+
"""Generates SRT formatted string from segment timestamps."""
|
44 |
+
srt_content = []
|
45 |
+
for i, ts in enumerate(segment_timestamps):
|
46 |
+
start_time = format_srt_time(ts['start'])
|
47 |
+
end_time = format_srt_time(ts['end'])
|
48 |
+
text = ts['segment']
|
49 |
+
srt_content.append(str(i + 1))
|
50 |
+
srt_content.append(f"{start_time} --> {end_time}")
|
51 |
+
srt_content.append(text)
|
52 |
+
srt_content.append("")
|
53 |
+
return "\n".join(srt_content)
|
54 |
+
|
55 |
+
|
56 |
def start_session(request: gr.Request):
|
57 |
session_hash = request.session_hash
|
58 |
session_dir = Path(f'/tmp/{session_hash}')
|
|
|
129 |
def get_transcripts_and_raw_times(audio_path, session_dir, source_lang, target_lang):
|
130 |
if not audio_path:
|
131 |
gr.Error("No audio file path provided for transcription.", duration=None)
|
132 |
+
# Return an update to hide the buttons
|
133 |
+
return [], [], None, gr.DownloadButton(label="Download Transcript (CSV)", visible=False), gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
|
134 |
|
135 |
vis_data = [["N/A", "N/A", "Processing failed"]]
|
136 |
raw_times_data = [[0.0, 0.0]]
|
137 |
processed_audio_path = None
|
138 |
csv_file_path = None
|
139 |
+
srt_file_path = None
|
140 |
original_path_name = Path(audio_path).name
|
141 |
audio_name = Path(audio_path).stem
|
142 |
|
143 |
+
# Initialize button states
|
144 |
+
csv_button_update = gr.DownloadButton(label="Download Transcript (CSV)", visible=False)
|
145 |
+
srt_button_update = gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
|
146 |
+
|
147 |
try:
|
148 |
try:
|
149 |
gr.Info(f"Loading audio: {original_path_name}", duration=2)
|
|
|
151 |
print('Audio loaded successfully')
|
152 |
except Exception as load_e:
|
153 |
gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None)
|
154 |
+
return [["Error", "Error", "Load failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
155 |
|
156 |
resampled = False
|
157 |
mono = False
|
|
|
163 |
resampled = True
|
164 |
except Exception as resample_e:
|
165 |
gr.Error(f"Failed to resample audio: {resample_e}", duration=None)
|
166 |
+
return [["Error", "Error", "Resample failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
167 |
|
168 |
if audio.channels == 2:
|
169 |
try:
|
|
|
171 |
mono = True
|
172 |
except Exception as mono_e:
|
173 |
gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None)
|
174 |
+
return [["Error", "Error", "Mono conversion failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
175 |
elif audio.channels > 2:
|
176 |
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
|
177 |
+
return [["Error", "Error", f"{audio.channels}-channel audio not supported"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
178 |
|
179 |
if resampled or mono:
|
180 |
try:
|
|
|
186 |
gr.Error(f"Failed to export processed audio: {export_e}", duration=None)
|
187 |
if processed_audio_path and os.path.exists(processed_audio_path):
|
188 |
os.remove(processed_audio_path)
|
189 |
+
return [["Error", "Error", "Export failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
190 |
else:
|
191 |
transcribe_path = audio_path
|
192 |
info_path_name = original_path_name
|
193 |
|
194 |
try:
|
195 |
model.to(device)
|
196 |
+
if source_lang == target_lang:
|
197 |
+
task = "Transcribing"
|
198 |
+
else:
|
199 |
+
task = "Translating"
|
200 |
+
gr.Info(f"{task} {info_path_name} from {source_lang} to {target_lang}", duration=2)
|
201 |
+
|
202 |
output = model.transcribe([transcribe_path], timestamps=True, source_lang=SUPPORTED_LANGS_MAP[source_lang], target_lang=SUPPORTED_LANGS_MAP[target_lang])
|
203 |
|
204 |
if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp:
|
205 |
+
gr.Error("Prediction failed or produced unexpected output format.", duration=None)
|
206 |
+
return [["Error", "Error", "Prediction Format Issue"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
207 |
|
208 |
segment_timestamps = output[0].timestamp['segment']
|
209 |
csv_headers = ["Start (s)", "End (s)", "Segment"]
|
210 |
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps]
|
211 |
raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps]
|
212 |
|
213 |
+
# CSV file generation
|
|
|
214 |
try:
|
215 |
+
csv_file_path = Path(session_dir, f"{task}_{audio_name}_{source_lang}_{target_lang}.csv")
|
216 |
writer = csv.writer(open(csv_file_path, 'w'))
|
217 |
writer.writerow(csv_headers)
|
218 |
writer.writerows(vis_data)
|
219 |
print(f"CSV transcript saved to temporary file: {csv_file_path}")
|
220 |
+
csv_button_update = gr.DownloadButton(value=csv_file_path, visible=True, label="Download Transcript (CSV)")
|
|
|
221 |
except Exception as csv_e:
|
222 |
gr.Error(f"Failed to create transcript CSV file: {csv_e}", duration=None)
|
223 |
print(f"Error writing CSV: {csv_e}")
|
|
|
224 |
|
225 |
+
# SRT file generation
|
226 |
+
if segment_timestamps:
|
227 |
+
try:
|
228 |
+
srt_content = generate_srt_content(segment_timestamps)
|
229 |
+
srt_file_path = Path(session_dir, f"{task}_{audio_name}_{source_lang}_{target_lang}.srt")
|
230 |
+
with open(srt_file_path, 'w', encoding='utf-8') as f:
|
231 |
+
f.write(srt_content)
|
232 |
+
print(f"SRT transcript saved to temporary file: {srt_file_path}")
|
233 |
+
srt_button_update = gr.DownloadButton(value=srt_file_path, visible=True, label="Download Transcript (SRT)")
|
234 |
+
except Exception as srt_e:
|
235 |
+
gr.Warning(f"Failed to create transcript SRT file: {srt_e}", duration=5)
|
236 |
+
print(f"Error writing SRT: {srt_e}")
|
237 |
+
|
238 |
+
gr.Info(f"{task} complete.", duration=2)
|
239 |
+
return vis_data, raw_times_data, audio_path, csv_button_update, srt_button_update
|
240 |
|
241 |
except torch.cuda.OutOfMemoryError as e:
|
242 |
error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.'
|
243 |
print(f"CUDA OutOfMemoryError: {e}")
|
244 |
gr.Error(error_msg, duration=None)
|
245 |
+
return [["OOM", "OOM", error_msg]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
246 |
|
247 |
except FileNotFoundError:
|
248 |
error_msg = f"Audio file for transcription not found: {Path(transcribe_path).name}."
|
249 |
print(f"Error: Transcribe audio file not found at path: {transcribe_path}")
|
250 |
gr.Error(error_msg, duration=None)
|
251 |
+
return [["Error", "Error", "File not found for transcription"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
|
|
252 |
|
253 |
except Exception as e:
|
254 |
+
error_msg = f"Prediction failed: {e}"
|
255 |
+
print(f"Error during prediction processing: {e}")
|
256 |
gr.Error(error_msg, duration=None)
|
257 |
vis_data = [["Error", "Error", error_msg]]
|
258 |
raw_times_data = [[0.0, 0.0]]
|
259 |
+
return vis_data, raw_times_data, audio_path, csv_button_update, srt_button_update
|
|
|
260 |
finally:
|
261 |
try:
|
262 |
if 'model' in locals() and hasattr(model, 'cpu'):
|
|
|
393 |
gr.Markdown("---")
|
394 |
gr.HTML("<h3 style='text-align: center'>Ready to dive in? Click on the text to jump to the part you need!</h3>")
|
395 |
|
396 |
+
# Define the DownloadButtons *before* the DataFrame
|
397 |
+
with gr.Row():
|
398 |
+
download_btn_csv = gr.DownloadButton(label="Download CSV", visible=False)
|
399 |
+
download_btn_srt = gr.DownloadButton(label="Download SRT", visible=False)
|
400 |
|
401 |
vis_timestamps_df = gr.DataFrame(
|
402 |
headers=["Start (s)", "End (s)", "Segment"],
|
403 |
datatype=["number", "number", "str"],
|
404 |
wrap=True,
|
405 |
+
label="Segments"
|
406 |
)
|
407 |
|
408 |
# selected_segment_player was defined after download_btn previously, keep it after df for layout
|
|
|
423 |
mic_transcribe_btn.click(
|
424 |
fn=get_transcripts_and_raw_times,
|
425 |
inputs=[mic_input, session_dir, source_lang_dropdown, target_lang_dropdown],
|
426 |
+
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn_csv, download_btn_srt],
|
427 |
api_name="transcribe_mic"
|
428 |
)
|
429 |
|
430 |
file_transcribe_btn.click(
|
431 |
fn=get_transcripts_and_raw_times,
|
432 |
inputs=[file_input, session_dir, source_lang_dropdown, target_lang_dropdown],
|
433 |
+
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn_csv, download_btn_srt],
|
434 |
api_name="transcribe_file"
|
435 |
)
|
436 |
|