Spaces:
Running
on
A100
Running
on
A100
| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| import os | |
| import time | |
| from copy import deepcopy | |
| import matplotlib.pyplot as plt | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.autograd.function import Function, InplaceFunction | |
| from torch.cuda import amp | |
| from .language_model.configuration_quantize import QuantizationConfig | |
| from .qfunction import block_cut, block_quant, block_reshape | |
| from .qutils import quant_get_local_rank | |
| from .realquantize.division_transpose import fp8_division_transpose | |
| from .realquantize.linear import fp8_linear_backward, fp8_linear_forward | |
| from .realquantize.quantize_and_transpose import fp8_quantize_and_transpose | |
| class QLinearTE(nn.Linear): | |
| def __init__(self, in_features, out_features, bias=True, device=None, args=None, layer_idx=0): | |
| super().__init__(in_features, out_features, bias, device) | |
| try: # TODO: remove this try except (llama & qwen2) | |
| self.args = QuantizationConfig(**deepcopy(args)) | |
| except: | |
| self.args = deepcopy(args) | |
| self.apply_quantize = min(self.weight.shape[0], self.weight.shape[1]) >= 3584 | |
| if quant_get_local_rank() == 0: | |
| if self.apply_quantize: | |
| print(f"[qlinear debug] Apply QLinear, {layer_idx}") | |
| else: | |
| print(f"[qlinear debug] Don't QLinear, {layer_idx} since the weight is too small: {self.weight.shape}") | |
| self.layer_idx = layer_idx | |
| self.layer_name = None | |
| def forward(self, Input): | |
| # if torch.randn(1) < 0.01: | |
| # print(Input.shape, self.weight.shape) | |
| if self.training and self.apply_quantize: | |
| # if False: | |
| output = QuantLinearTE.apply(Input, self.weight, self.bias, self.args, self.layer_name) | |
| else: | |
| output = F.linear(Input, self.weight, self.bias) | |
| return output | |
| # if int(os.environ.get("LOCAL_RANK")) == 0: | |
| # import IPython | |
| # IPython.embed() | |
| # else: | |
| # import time | |
| # time.sleep(1000) | |
| # class QuantLinearTE(Function): | |
| # @staticmethod | |
| # def forward(ctx, input, weight, bias, args, layer_type): | |
| # ctx.saved = input, weight, bias, args, layer_type | |
| # return F.linear(input, weight, bias) | |
| # @staticmethod | |
| # def backward(ctx, grad_output): | |
| # input, weight, bias, args, layer_type = ctx.saved | |
| # C_in = input.shape[-1] | |
| # C_out = grad_output.shape[-1] | |
| # grad_output_flatten = grad_output.reshape(-1, C_out) | |
| # input_flatten = input.reshape(-1, C_in) | |
| # if grad_output_flatten.dtype == input_flatten.dtype: | |
| # grad_weight = grad_output_flatten.t().mm(input_flatten) | |
| # else: | |
| # grad_weight = grad_output_flatten.float().t().mm(input_flatten) | |
| # if grad_output_flatten.dtype == weight.dtype: | |
| # grad_input = grad_output_flatten.mm(weight) | |
| # else: | |
| # grad_input = grad_output_flatten.float().mm(weight) | |
| # if bias is not None: | |
| # grad_bias = grad_output_flatten.sum(0) | |
| # else: | |
| # grad_bias = None | |
| # grad_input_transform = grad_input.reshape(input.size()) | |
| # return grad_input_transform, grad_weight, grad_bias, None, None | |
| class QuantLinearTE(Function): | |
| def forward(ctx, input, weight, bias, args, layer_name): | |
| time_bench = os.getenv("TIME_BENCH") | |
| if time_bench: | |
| start_1 = torch.cuda.Event(enable_timing=True) | |
| start_1.record() | |
| # Qinput, Iscale, Qinput_t = fp8_division_transpose(input, 16, args.fabit) | |
| Qinput, Iscale, Qinput_t = fp8_quantize_and_transpose(input, 16, args.fabit, transpose_output_2d=True) | |
| if time_bench: | |
| end_1 = torch.cuda.Event(enable_timing=True) | |
| end_1.record() | |
| start_2 = torch.cuda.Event(enable_timing=True) | |
| start_2.record() | |
| # Qweight, Wscale, Qweight_t = fp8_division_transpose(weight, 16, args.fwbit) | |
| Qweight, Wscale, Qweight_t = fp8_quantize_and_transpose(weight, 16, args.fwbit, transpose_output_2d=True) | |
| if time_bench: | |
| end_2 = torch.cuda.Event(enable_timing=True) | |
| end_2.record() | |
| start_3 = torch.cuda.Event(enable_timing=True) | |
| start_3.record() | |
| ctx.saved = Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name | |
| fc_output = fp8_linear_forward(Qinput, Iscale, Qweight, Wscale, False, 0, bias) | |
| if time_bench: | |
| end_3 = torch.cuda.Event(enable_timing=True) | |
| end_3.record() | |
| start_4 = torch.cuda.Event(enable_timing=True) | |
| start_4.record() | |
| output = F.linear(input, weight, bias) | |
| end_4 = torch.cuda.Event(enable_timing=True) | |
| end_4.record() | |
| torch.cuda.synchronize() | |
| if quant_get_local_rank() == 0: | |
| print( | |
| f"[Forward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | " | |
| f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {input.shape} | Weight shape: {weight.shape}" | |
| ) | |
| return fc_output | |
| def backward(ctx, grad_output): | |
| Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name = ctx.saved | |
| time_bench = os.getenv("TIME_BENCH") | |
| if time_bench: | |
| start_1 = torch.cuda.Event(enable_timing=True) | |
| start_1.record() | |
| # Qgrad_output, Gscale, Qgrad_output_t = fp8_division_transpose(grad_output, 16, args.bobit, stochastic=False) | |
| Qgrad_output, Gscale, Qgrad_output_t = fp8_quantize_and_transpose( | |
| grad_output, 16, args.bobit, stochastic=False, transpose_output_2d=True | |
| ) | |
| if time_bench: | |
| end_1 = torch.cuda.Event(enable_timing=True) | |
| end_1.record() | |
| start_2 = torch.cuda.Event(enable_timing=True) | |
| start_2.record() | |
| grad_input, grad_weight = fp8_linear_backward( | |
| Qinput_t, | |
| Iscale, | |
| Qgrad_output, | |
| Gscale, | |
| Qgrad_output_t, | |
| Qweight_t, | |
| Wscale, | |
| 16, | |
| bias, | |
| stochastic=False, | |
| dgrad_quantize=False, | |
| ) | |
| if time_bench: | |
| end_2 = torch.cuda.Event(enable_timing=True) | |
| end_2.record() | |
| start_3 = torch.cuda.Event(enable_timing=True) | |
| start_3.record() | |
| if bias is not None: | |
| grad_bias = grad_output.reshape(-1, grad_output.shape[-1]).sum(0) | |
| else: | |
| grad_bias = None | |
| if time_bench: | |
| end_3 = torch.cuda.Event(enable_timing=True) | |
| end_3.record() | |
| # ========== BF16 ========== | |
| C_in = Qinput_t.shape[0] | |
| C_out = grad_output.shape[-1] | |
| grad_output_flatten = grad_output.reshape(-1, C_out) | |
| input_flatten = Qinput_t.t().reshape(-1, C_in).to(torch.bfloat16) | |
| weight = Qweight_t.t().to(torch.bfloat16) | |
| start_4 = torch.cuda.Event(enable_timing=True) | |
| start_4.record() | |
| if grad_output_flatten.dtype == input_flatten.dtype: | |
| _grad_weight = grad_output_flatten.t().mm(input_flatten) | |
| else: | |
| _grad_weight = grad_output_flatten.float().t().mm(input_flatten) | |
| if grad_output_flatten.dtype == weight.dtype: | |
| _grad_input = grad_output_flatten.mm(weight) | |
| else: | |
| _grad_input = grad_output_flatten.float().mm(weight) | |
| end_4 = torch.cuda.Event(enable_timing=True) | |
| end_4.record() | |
| torch.cuda.synchronize() | |
| if quant_get_local_rank() == 0: | |
| print( | |
| f"[Backward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | " | |
| f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {Qinput_t.shape} | Weight shape: {weight.shape}" | |
| ) | |
| return grad_input, grad_weight, grad_bias, None, None | |