Spaces:
Running
on
A100
Running
on
A100
| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # This file is modified from https://github.com/haotian-liu/LLaVA/ | |
| from abc import abstractmethod | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class SoundTower(nn.Module): | |
| def __init__(self, sound_tower, args, delay_load=False): | |
| super().__init__() | |
| self.is_loaded = False | |
| self.sound_tower_name = sound_tower | |
| self.cfg_only = None | |
| def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): | |
| """ | |
| Computes the output length of the convolutional layers and the output length of the audio encoder | |
| """ | |
| input_lengths = (input_lengths - 1) // 2 + 1 | |
| output_lengths = (input_lengths - 2) // 2 + 1 | |
| return input_lengths, output_lengths | |
| def forward(self, sounds, mask=None): | |
| if type(sounds) is list: | |
| sound_features = [] | |
| for sound in sounds: | |
| # Calculate attention mask | |
| audio_feat_lengths, audio_output_lengths = self._get_feat_extract_output_lengths(mask.sum(-1)) | |
| # for cases where only one window is there for the audio_clip | |
| batch_size, _, max_mel_seq_len = sound.shape | |
| max_seq_len = (max_mel_seq_len - 2) // 2 + 1 | |
| seq_range = ( | |
| torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device) | |
| .unsqueeze(0) | |
| .expand(batch_size, max_seq_len) | |
| ) | |
| lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len) | |
| padding_mask = seq_range >= lengths_expand | |
| audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( | |
| batch_size, 1, max_seq_len, max_seq_len | |
| ) | |
| audio_attention_mask = audio_attention_mask_.to( | |
| dtype=self.sound_tower.conv1.weight.dtype, device=self.sound_tower.conv1.weight.device | |
| ) | |
| audio_attention_mask[audio_attention_mask_] = float("-inf") | |
| # Calculate features | |
| sound_feature = self.sound_tower(sound, attention_mask=audio_attention_mask) | |
| sound_feature = sound_feature.to(sound.dtype) | |
| sound_feature = sound_feature.last_hidden_state | |
| sound_features.append(sound_feature) | |
| else: | |
| # Calculate attention mask | |
| if len(sounds.shape) == 5: | |
| sounds = sounds.squeeze(0).squeeze(1) | |
| mask = mask.squeeze(0) | |
| audio_feat_lengths, audio_output_lengths = self._get_feat_extract_output_lengths(mask.sum(-1)) | |
| # for cases where only one window is there for the audio_clip | |
| batch_size, _, max_mel_seq_len = sounds.shape | |
| max_seq_len = (max_mel_seq_len - 2) // 2 + 1 | |
| seq_range = ( | |
| torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device) | |
| .unsqueeze(0) | |
| .expand(batch_size, max_seq_len) | |
| ) | |
| lengths_expand = audio_feat_lengths.expand(batch_size, max_seq_len) | |
| padding_mask = seq_range >= lengths_expand | |
| audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( | |
| batch_size, 1, max_seq_len, max_seq_len | |
| ) | |
| audio_attention_mask = audio_attention_mask_.to( | |
| dtype=self.sound_tower.conv1.weight.dtype, device=self.sound_tower.conv1.weight.device | |
| ) | |
| audio_attention_mask[audio_attention_mask_] = float("-inf") | |
| # Calculate features | |
| sound_features = self.sound_tower(sounds, attention_mask=audio_attention_mask) | |
| sound_features = sound_features.last_hidden_state | |
| sound_features = sound_features.to(sounds.dtype) | |
| return sound_features | |
| def dummy_feature(self): | |
| return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
| def dtype(self): | |
| return self.sound_tower.dtype | |
| def config(self): | |
| if self.is_loaded: | |
| return self.sound_tower.config | |
| else: | |
| return self.cfg_only | |
| def device(self): | |
| return self.sound_tower.device | |
| def hidden_size(self): | |
| return self.config.hidden_size | |