Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			A100
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			A100
	| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import torch | |
| from transformers import PretrainedConfig, SiglipImageProcessor | |
| from llava.model.multimodal_encoder.vision_encoder import VisionTower, VisionTowerDynamicS2, VisionTowerS2 | |
| from .siglip import SiglipVisionModel | |
| class SiglipVisionTower(VisionTower): | |
| def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None: | |
| super().__init__(model_name_or_path, config) | |
| # TODO(ligengl): why pass config here leading to errors? | |
| self.vision_tower = SiglipVisionModel.from_pretrained( | |
| model_name_or_path, | |
| attn_implementation="flash_attention_2", | |
| torch_dtype=eval(config.model_dtype), | |
| ) | |
| self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path) | |
| self.is_loaded = True | |
| class SiglipVisionTowerS2(VisionTowerS2): | |
| def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None: | |
| super().__init__(model_name_or_path, config) | |
| self.vision_tower = SiglipVisionModel.from_pretrained( | |
| model_name_or_path, | |
| attn_implementation="flash_attention_2", | |
| torch_dtype=eval(config.model_dtype), | |
| ) | |
| self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path) | |
| # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information | |
| self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[-1] | |
| self.is_loaded = True | |
| class SiglipVisionTowerDynamicS2(VisionTowerDynamicS2): | |
| def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None: | |
| super().__init__(model_name_or_path, config) | |
| self.vision_tower = SiglipVisionModel.from_pretrained( | |
| model_name_or_path, | |
| attn_implementation="flash_attention_2", | |
| torch_dtype=eval(config.model_dtype), | |
| ) | |
| self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path) | |
| # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information | |
| self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[0] | |
| self.is_loaded = True | |
