Spaces:
Running
on
A100
Running
on
A100
| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import torch | |
| import torchvision.transforms as T | |
| from torchvision.transforms.functional import InterpolationMode | |
| from transformers import AutoConfig, AutoModel | |
| from transformers.image_processing_utils import BaseImageProcessor | |
| from llava.model.multimodal_encoder.intern.configuration_intern_vit import InternVisionConfig | |
| from llava.model.multimodal_encoder.intern.modeling_intern_vit import InternVisionModel | |
| from llava.model.multimodal_encoder.vision_encoder import VisionTower, VisionTowerS2 | |
| def build_transform(input_size): | |
| transform = T.Compose( | |
| [ | |
| T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), | |
| ] | |
| ) | |
| return transform | |
| class InternVisionPreprocessor(BaseImageProcessor): | |
| def __init__(self, resize_size=448): | |
| super().__init__() | |
| self.resize_size = resize_size | |
| def size(self): | |
| return {"height": self.resize_size, "width": self.resize_size} | |
| def preprocess(self, image, return_tensors): | |
| transform = build_transform(self.resize_size) | |
| if isinstance(image, list): | |
| image_tensor = [transform(img) for img in image] | |
| return {"pixel_values": image_tensor} | |
| else: | |
| image_tensor = transform(image) | |
| return {"pixel_values": [image_tensor]} | |
| class InternVisionTower(VisionTower): | |
| def __init__(self, vision_tower, config, drop_path_rate=0.0): | |
| super().__init__(vision_tower, config) | |
| self._drop_path_rate = drop_path_rate | |
| self.image_processor = InternVisionPreprocessor() | |
| vision_config = InternVisionConfig.from_pretrained(vision_tower) | |
| vision_config.drop_path_rate = self._drop_path_rate | |
| self.vision_tower = InternVisionModel.from_pretrained( | |
| vision_tower, torch_dtype=eval(config.model_dtype), config=vision_config | |
| ) | |
| self.is_loaded = True | |
| class InternVisionTowerS2(VisionTowerS2): | |
| def __init__(self, vision_tower, config, drop_path_rate=0.0): | |
| super().__init__(vision_tower, config) | |
| self._drop_path_rate = drop_path_rate | |
| self.image_processor = InternVisionPreprocessor(resize_size=self.scales[-1]) | |
| vision_config = InternVisionConfig.from_pretrained(vision_tower) | |
| vision_config.drop_path_rate = self._drop_path_rate | |
| self.vision_tower = InternVisionModel.from_pretrained( | |
| vision_tower, torch_dtype=eval(config.model_dtype), config=vision_config | |
| ) | |
| self.is_loaded = True | |
| AutoConfig.register("intern_vit_6b", InternVisionConfig) | |
| AutoModel.register(InternVisionConfig, InternVisionModel) | |