Spaces:
Runtime error
Runtime error
| # This script is based on https://github.com/huggingface/transformers/blob/v4.29.1/src/transformers/models/whisper/modeling_whisper.py | |
| """ PyTorch Whisper model.""" | |
| import math | |
| import random | |
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from transformers.activations import ACT2FN | |
| from transformers.generation.logits_process import WhisperTimeStampLogitsProcessor | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| Seq2SeqLMOutput, | |
| Seq2SeqModelOutput, | |
| SequenceClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
| from transformers.models.whisper.configuration_whisper import WhisperConfig | |
| from transformers.models.whisper.tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "WhisperConfig" | |
| _CHECKPOINT_FOR_DOC = "openai/whisper-tiny" | |
| WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "openai/whisper-base", | |
| # See all Whisper models at https://huggingface.co/models?filter=whisper | |
| ] | |
| # Copied from transformers.models.bart.modeling_bart.shift_tokens_right | |
| def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
| """ | |
| Shift input ids one token to the right. | |
| """ | |
| shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
| shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
| shifted_input_ids[:, 0] = decoder_start_token_id | |
| if pad_token_id is None: | |
| raise ValueError("self.model.config.pad_token_id has to be defined.") | |
| # replace possible -100 values in labels by `pad_token_id` | |
| shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
| return shifted_input_ids | |
| # Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
| ): | |
| """ | |
| Make causal mask used for bi-directional self-attention. | |
| """ | |
| bsz, tgt_len = input_ids_shape | |
| mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) | |
| mask_cond = torch.arange(mask.size(-1), device=device) | |
| mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
| mask = mask.to(dtype) | |
| if past_key_values_length > 0: | |
| mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
| return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
| # Copied from transformers.models.bart.modeling_bart._expand_mask | |
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
| """ | |
| bsz, src_len = mask.size() | |
| tgt_len = tgt_len if tgt_len is not None else src_len | |
| expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
| inverted_mask = 1.0 - expanded_mask | |
| return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices | |
| def _compute_mask_indices( | |
| shape: Tuple[int, int], | |
| mask_prob: float, | |
| mask_length: int, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| min_masks: int = 0, | |
| ) -> np.ndarray: | |
| """ | |
| Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for | |
| ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on | |
| CPU as part of the preprocessing during training. | |
| Args: | |
| shape: The shape for which to compute masks. This should be of a tuple of size 2 where | |
| the first element is the batch size and the second element is the length of the axis to span. | |
| mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of | |
| independently generated mask spans of length `mask_length` is computed by | |
| `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the | |
| actual percentage will be smaller. | |
| mask_length: size of the mask | |
| min_masks: minimum number of masked spans | |
| attention_mask: A (right-padded) attention mask which independently shortens the feature axis of | |
| each batch dimension. | |
| """ | |
| batch_size, sequence_length = shape | |
| if mask_length < 1: | |
| raise ValueError("`mask_length` has to be bigger than 0.") | |
| if mask_length > sequence_length: | |
| raise ValueError( | |
| f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" | |
| f" and `sequence_length`: {sequence_length}`" | |
| ) | |
| # epsilon is used for probabilistic rounding | |
| epsilon = np.random.rand(1).item() | |
| def compute_num_masked_span(input_length): | |
| """Given input length, compute how many spans should be masked""" | |
| num_masked_span = int(mask_prob * input_length / mask_length + epsilon) | |
| num_masked_span = max(num_masked_span, min_masks) | |
| # make sure num masked span <= sequence_length | |
| if num_masked_span * mask_length > sequence_length: | |
| num_masked_span = sequence_length // mask_length | |
| # make sure num_masked span is also <= input_length - (mask_length - 1) | |
| if input_length - (mask_length - 1) < num_masked_span: | |
| num_masked_span = max(input_length - (mask_length - 1), 0) | |
| return num_masked_span | |
| # compute number of masked spans in batch | |
| input_lengths = ( | |
| attention_mask.sum(-1).detach().tolist() | |
| if attention_mask is not None | |
| else [sequence_length for _ in range(batch_size)] | |
| ) | |
| # SpecAugment mask to fill | |
| spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) | |
| spec_aug_mask_idxs = [] | |
| max_num_masked_span = compute_num_masked_span(sequence_length) | |
| if max_num_masked_span == 0: | |
| return spec_aug_mask | |
| for input_length in input_lengths: | |
| # compute num of masked spans for this input | |
| num_masked_span = compute_num_masked_span(input_length) | |
| # get random indices to mask | |
| spec_aug_mask_idx = np.random.choice( | |
| np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False | |
| ) | |
| # pick first sampled index that will serve as a dummy index to pad vector | |
| # to ensure same dimension for all batches due to probabilistic rounding | |
| # Picking first sample just pads those vectors twice. | |
| if len(spec_aug_mask_idx) == 0: | |
| # this case can only happen if `input_length` is strictly smaller then | |
| # `sequence_length` in which case the last token has to be a padding | |
| # token which we can use as a dummy mask id | |
| dummy_mask_idx = sequence_length - 1 | |
| else: | |
| dummy_mask_idx = spec_aug_mask_idx[0] | |
| spec_aug_mask_idx = np.concatenate( | |
| [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] | |
| ) | |
| spec_aug_mask_idxs.append(spec_aug_mask_idx) | |
| spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) | |
| # expand masked indices to masked spans | |
| spec_aug_mask_idxs = np.broadcast_to( | |
| spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) | |
| ) | |
| spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) | |
| # add offset to the starting indexes so that indexes now create a span | |
| offsets = np.arange(mask_length)[None, None, :] | |
| offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( | |
| batch_size, max_num_masked_span * mask_length | |
| ) | |
| spec_aug_mask_idxs = spec_aug_mask_idxs + offsets | |
| # ensure that we cannot have indices larger than sequence_length | |
| if spec_aug_mask_idxs.max() > sequence_length - 1: | |
| spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 | |
| # scatter indices to mask | |
| np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) | |
| return spec_aug_mask | |
| class WhisperPositionalEmbedding(nn.Embedding): | |
| def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): | |
| super().__init__(num_positions, embedding_dim) | |
| def forward(self, input_ids, past_key_values_length=0): | |
| return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[1]] | |
| class WhisperAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| num_heads: int, | |
| dropout: float = 0.0, | |
| is_decoder: bool = False, | |
| bias: bool = True, | |
| ): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.head_dim = embed_dim // num_heads | |
| if (self.head_dim * num_heads) != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
| f" and `num_heads`: {num_heads})." | |
| ) | |
| self.scaling = self.head_dim**-0.5 | |
| self.is_decoder = is_decoder | |
| self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) | |
| self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| # Copied from transformers.models.bart.modeling_bart.BartAttention.forward with BART->whisper | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| key_value_states: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| # if key_value_states are provided this layer is used as a cross-attention layer | |
| # for the decoder | |
| is_cross_attention = key_value_states is not None | |
| bsz, tgt_len, _ = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scaling | |
| # get key, value proj | |
| # `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
| # is checking that the `sequence_length` of the `past_key_value` is the same as | |
| # the provided `key_value_states` to support prefix tuning | |
| if ( | |
| is_cross_attention | |
| and past_key_value is not None | |
| and past_key_value[0].shape[2] == key_value_states.shape[1] | |
| ): | |
| # reuse k,v, cross_attentions | |
| key_states = past_key_value[0] | |
| value_states = past_key_value[1] | |
| elif is_cross_attention: | |
| # cross_attentions | |
| key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
| elif past_key_value is not None: | |
| # reuse k, v, self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
| value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
| else: | |
| # self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| if self.is_decoder: | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| past_key_value = (key_states, value_states) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.reshape(*proj_shape) | |
| value_states = value_states.reshape(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| if layer_head_mask is not None: | |
| if layer_head_mask.size() != (self.num_heads,): | |
| raise ValueError( | |
| f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
| f" {layer_head_mask.size()}" | |
| ) | |
| attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if output_attentions: | |
| # this operation is a bit awkward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to be reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
| # partitioned across GPUs when using tensor-parallelism. | |
| attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped, past_key_value | |
| # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Whisper | |
| class WhisperEncoderLayer(nn.Module): | |
| def __init__(self, config: WhisperConfig): | |
| super().__init__() | |
| self.embed_dim = config.d_model | |
| self.self_attn = WhisperAttention( | |
| embed_dim=self.embed_dim, | |
| num_heads=config.encoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| ) | |
| self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.dropout = config.dropout | |
| self.activation_fn = ACT2FN[config.activation_function] | |
| self.activation_dropout = config.activation_dropout | |
| self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
| self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
| self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| layer_head_mask: torch.Tensor, | |
| output_attentions: bool = False, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
| `(encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| hidden_states, attn_weights, _ = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| layer_head_mask=layer_head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| residual = hidden_states | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
| hidden_states = self.fc2(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| if hidden_states.dtype == torch.float16 and ( | |
| torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
| ): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Whisper | |
| class WhisperDecoderLayer(nn.Module): | |
| def __init__(self, config: WhisperConfig): | |
| super().__init__() | |
| self.embed_dim = config.d_model | |
| self.self_attn = WhisperAttention( | |
| embed_dim=self.embed_dim, | |
| num_heads=config.decoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=True, | |
| ) | |
| self.dropout = config.dropout | |
| self.activation_fn = ACT2FN[config.activation_function] | |
| self.activation_dropout = config.activation_dropout | |
| self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.encoder_attn = WhisperAttention( | |
| self.embed_dim, | |
| config.decoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=True, | |
| ) | |
| self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
| self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
| self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = True, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| encoder_hidden_states (`torch.FloatTensor`): | |
| cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
| encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
| `(encoder_attention_heads,)`. | |
| cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of | |
| size `(decoder_attention_heads,)`. | |
| past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| # Self Attention | |
| # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
| self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
| # add present self-attn cache to positions 1,2 of present_key_value tuple | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| past_key_value=self_attn_past_key_value, | |
| attention_mask=attention_mask, | |
| layer_head_mask=layer_head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| # Cross-Attention Block | |
| cross_attn_present_key_value = None | |
| cross_attn_weights = None | |
| if encoder_hidden_states is not None: | |
| residual = hidden_states | |
| hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
| # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
| cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
| hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
| hidden_states=hidden_states, | |
| key_value_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=cross_attn_past_key_value, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| # add cross-attn to positions 3,4 of present_key_value tuple | |
| present_key_value = present_key_value + cross_attn_present_key_value | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
| hidden_states = self.fc2(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights, cross_attn_weights) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class WhisperPreTrainedModel(PreTrainedModel): | |
| config_class = WhisperConfig | |
| base_model_prefix = "model" | |
| main_input_name = "input_features" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"] | |
| def _init_weights(self, module): | |
| std = self.config.init_std | |
| if isinstance(module, (nn.Linear, nn.Conv1d)): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (WhisperDecoder, WhisperEncoder)): | |
| module.gradient_checkpointing = value | |
| def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): | |
| """ | |
| Computes the output length of the convolutional layers | |
| """ | |
| input_lengths = (input_lengths - 1) // 2 + 1 | |
| return input_lengths | |
| WHISPER_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`WhisperConfig`]): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| WHISPER_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
| Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
| loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
| the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
| [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
| tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
| attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in | |
| `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Indices of decoder input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are decoder input IDs?](../glossary#decoder-input-ids) | |
| Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If | |
| `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
| `past_key_values`). | |
| decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
| be used by default. | |
| If you want to change padding behavior, you should read | |
| [`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART | |
| paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. | |
| head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
| Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
| `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
| hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
| `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
| `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
| representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
| input (see `past_key_values`). This is useful if you want more control over how to convert | |
| `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| WHISPER_ENCODER_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
| Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
| loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
| the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
| [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
| tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
| head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
| Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
| `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
| hidden-states at the output of the last layer of the encoder. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class WhisperEncoder(WhisperPreTrainedModel): | |
| """ | |
| Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
| [`WhisperEncoderLayer`]. | |
| Args: | |
| config: WhisperConfig | |
| """ | |
| def __init__(self, config: WhisperConfig): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.encoder_layerdrop | |
| embed_dim = config.d_model | |
| self.num_mel_bins = config.num_mel_bins | |
| self.padding_idx = config.pad_token_id | |
| self.max_source_positions = config.max_source_positions | |
| self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
| self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) | |
| self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) | |
| self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) | |
| self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)]) | |
| self.layer_norm = nn.LayerNorm(config.d_model) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def _freeze_parameters(self): | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| self._requires_grad = False | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.conv1 | |
| def set_input_embeddings(self, value: nn.Module): | |
| self.conv1 = value | |
| def forward( | |
| self, | |
| input_features, | |
| attention_mask=None, | |
| head_mask=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Args: | |
| input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
| Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be | |
| obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a | |
| `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into | |
| `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding | |
| and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
| attention_mask (`torch.Tensor`)`, *optional*): | |
| Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, | |
| but it is not used. By default the silence in the input log mel spectrogram are ignored. | |
| head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| inputs_embeds = nn.functional.gelu(self.conv1(input_features)) | |
| inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) | |
| inputs_embeds = inputs_embeds.permute(0, 2, 1) | |
| embed_pos = self.embed_positions.weight | |
| hidden_states = inputs_embeds + embed_pos | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| # check if head_mask has a correct number of layers specified if desired | |
| if head_mask is not None: | |
| assert head_mask.size()[0] == ( | |
| len(self.layers) | |
| ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| dropout_probability = random.uniform(0, 1) | |
| if self.training and (dropout_probability < self.layerdrop): # skip the layer | |
| layer_outputs = (None, None) | |
| else: | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| None, | |
| (head_mask[idx] if head_mask is not None else None), | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| None, | |
| layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| hidden_states = self.layer_norm(hidden_states) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| class WhisperDecoder(WhisperPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`] | |
| Args: | |
| config: WhisperConfig | |
| """ | |
| def __init__(self, config: WhisperConfig): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.decoder_layerdrop | |
| self.padding_idx = config.pad_token_id | |
| self.max_target_positions = config.max_target_positions | |
| self.max_source_positions = config.max_source_positions | |
| self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) | |
| self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model) | |
| self.layers = nn.ModuleList([WhisperDecoderLayer(config) for _ in range(config.decoder_layers)]) | |
| self.layer_norm = nn.LayerNorm(config.d_model) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| combined_attention_mask = None | |
| if input_shape[-1] > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, | |
| inputs_embeds.dtype, | |
| device=inputs_embeds.device, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| encoder_hidden_states=None, | |
| head_mask=None, | |
| cross_attn_head_mask=None, | |
| past_key_values=None, | |
| inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
| of the decoder. | |
| head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention | |
| on hidden heads. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
| shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
| cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
| that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
| all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of | |
| shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing | |
| `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more | |
| control over how to convert `input_ids` indices into associated vectors than the model's internal | |
| embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
| # past_key_values_length | |
| past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| attention_mask = self._prepare_decoder_attention_mask( | |
| attention_mask, input_shape, inputs_embeds, past_key_values_length | |
| ) | |
| # embed positions | |
| if input_ids is not None: | |
| positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) | |
| else: | |
| positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length) | |
| hidden_states = inputs_embeds + positions | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." | |
| ) | |
| use_cache = False | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
| next_decoder_cache = () if use_cache else None | |
| # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
| for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
| if attn_mask is not None: | |
| assert attn_mask.size()[0] == (len(self.layers)), ( | |
| f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
| f" {head_mask.size()[0]}." | |
| ) | |
| for idx, decoder_layer in enumerate(self.layers): | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| dropout_probability = random.uniform(0, 1) | |
| if self.training and (dropout_probability < self.layerdrop): | |
| continue | |
| past_key_value = past_key_values[idx] if past_key_values is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, output_attentions, use_cache) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(decoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| None, # encoder attention mask | |
| head_mask[idx] if head_mask is not None else None, | |
| cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
| None, # past_key_value | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
| cross_attn_layer_head_mask=( | |
| cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
| ), | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| if encoder_hidden_states is not None: | |
| all_cross_attentions += (layer_outputs[2],) | |
| hidden_states = self.layer_norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = next_decoder_cache if use_cache else None | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| class WhisperModel(WhisperPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"proj_out.weight"] | |
| def __init__(self, config: WhisperConfig): | |
| super().__init__(config) | |
| self.encoder = WhisperEncoder(config) | |
| self.decoder = WhisperDecoder(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.decoder.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.decoder.embed_tokens = value | |
| def get_encoder(self): | |
| return self.encoder | |
| def get_decoder(self): | |
| return self.decoder | |
| def freeze_encoder(self): | |
| """ | |
| Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
| not be updated during training. | |
| """ | |
| self.encoder._freeze_parameters() | |
| def _mask_input_features( | |
| self, | |
| input_features: torch.FloatTensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| ): | |
| """ | |
| Masks extracted features along time axis and/or along feature axis according to | |
| [SpecAugment](https://arxiv.org/abs/1904.08779). | |
| """ | |
| # `config.apply_spec_augment` can set masking to False | |
| if not getattr(self.config, "apply_spec_augment", True): | |
| return input_features | |
| # generate indices & apply SpecAugment along time axis | |
| batch_size, hidden_size, sequence_length = input_features.size() | |
| if self.config.mask_time_prob > 0 and self.training: | |
| # generate indices & apply SpecAugment along time axis | |
| mask_time_indices = _compute_mask_indices( | |
| (batch_size, sequence_length), | |
| mask_prob=self.config.mask_time_prob, | |
| mask_length=self.config.mask_time_length, | |
| attention_mask=attention_mask, | |
| min_masks=self.config.mask_time_min_masks, | |
| ) | |
| mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) | |
| mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) | |
| input_features[mask_time_indices] = 0 | |
| if self.config.mask_feature_prob > 0 and self.training: | |
| # generate indices & apply SpecAugment along feature axis | |
| mask_feature_indices = _compute_mask_indices( | |
| (batch_size, hidden_size), | |
| mask_prob=self.config.mask_feature_prob, | |
| mask_length=self.config.mask_feature_length, | |
| min_masks=self.config.mask_feature_min_masks, | |
| ) | |
| mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) | |
| input_features[mask_feature_indices] = 0 | |
| return input_features | |
| def forward( | |
| self, | |
| input_features: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: | |
| r""" | |
| Returns: | |
| Example: | |
| ```python | |
| >>> import torch | |
| >>> from transformers import AutoFeatureExtractor, WhisperModel | |
| >>> from datasets import load_dataset | |
| >>> model = WhisperModel.from_pretrained("openai/whisper-base") | |
| >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") | |
| >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
| >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") | |
| >>> input_features = inputs.input_features | |
| >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id | |
| >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state | |
| >>> list(last_hidden_state.shape) | |
| [1, 2, 512] | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if encoder_outputs is None: | |
| input_features = self._mask_input_features(input_features, attention_mask=attention_mask) | |
| encoder_outputs = self.encoder( | |
| input_features, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| encoder_hidden_states=encoder_outputs[0], | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs + encoder_outputs | |
| return Seq2SeqModelOutput( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| class WhisperForConditionalGeneration(WhisperPreTrainedModel): | |
| base_model_prefix = "model" | |
| _keys_to_ignore_on_load_missing = [ | |
| r"encoder.version", | |
| r"decoder.version", | |
| r"proj_out.weight", | |
| ] | |
| _keys_to_ignore_on_save = [ | |
| r"proj_out.weight", | |
| ] | |
| def __init__(self, config: WhisperConfig): | |
| super().__init__(config) | |
| self.model = WhisperModel(config) | |
| self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_encoder(self): | |
| return self.model.get_encoder() | |
| def get_decoder(self): | |
| return self.model.get_decoder() | |
| def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: | |
| new_embeddings = super().resize_token_embeddings(new_num_tokens) | |
| return new_embeddings | |
| def get_output_embeddings(self): | |
| return self.proj_out | |
| def set_output_embeddings(self, new_embeddings): | |
| self.proj_out = new_embeddings | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.model.get_input_embeddings() | |
| def freeze_encoder(self): | |
| """ | |
| Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
| not be updated during training. | |
| """ | |
| self.model.encoder._freeze_parameters() | |
| def forward( | |
| self, | |
| input_features: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` | |
| or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is | |
| only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> import torch | |
| >>> from transformers import AutoProcessor, WhisperForConditionalGeneration | |
| >>> from datasets import load_dataset | |
| >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") | |
| >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
| >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
| >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") | |
| >>> input_features = inputs.input_features | |
| >>> generated_ids = model.generate(inputs=input_features) | |
| >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| >>> transcription | |
| ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if labels is not None: | |
| if decoder_input_ids is None and decoder_inputs_embeds is None: | |
| decoder_input_ids = shift_tokens_right( | |
| labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
| ) | |
| outputs = self.model( | |
| input_features, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| encoder_outputs=encoder_outputs, | |
| decoder_attention_mask=decoder_attention_mask, | |
| head_mask=head_mask, | |
| decoder_head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| decoder_inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| lm_logits = self.proj_out(outputs[0]) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| # move labels to correct device to enable PP | |
| labels = labels.to(lm_logits.device) | |
| loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) | |
| if not return_dict: | |
| output = (lm_logits,) + outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return Seq2SeqLMOutput( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=outputs.past_key_values, | |
| decoder_hidden_states=outputs.decoder_hidden_states, | |
| decoder_attentions=outputs.decoder_attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
| encoder_hidden_states=outputs.encoder_hidden_states, | |
| encoder_attentions=outputs.encoder_attentions, | |
| ) | |
| def generate( | |
| self, | |
| inputs: Optional[torch.Tensor] = None, | |
| generation_config=None, | |
| logits_processor=None, | |
| stopping_criteria=None, | |
| prefix_allowed_tokens_fn=None, | |
| synced_gpus=False, | |
| return_timestamps=None, | |
| task=None, | |
| language=None, | |
| is_multilingual=None, | |
| **kwargs, | |
| ): | |
| """ | |
| Generates sequences of token ids for models with a language modeling head. | |
| <Tip warning={true}> | |
| Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the | |
| model's default generation configuration. You can override any `generation_config` by passing the corresponding | |
| parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. | |
| For an overview of generation strategies and code examples, check out the [following | |
| guide](./generation_strategies). | |
| </Tip> | |
| Parameters: | |
| inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): | |
| The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the | |
| method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` | |
| should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of | |
| `input_ids`, `input_values`, `input_features`, or `pixel_values`. | |
| generation_config (`~generation.GenerationConfig`, *optional*): | |
| The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
| passed to generate matching the attributes of `generation_config` will override them. If | |
| `generation_config` is not provided, the default will be used, which had the following loading | |
| priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
| configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
| default values, whose documentation should be checked to parameterize generation. | |
| logits_processor (`LogitsProcessorList`, *optional*): | |
| Custom logits processors that complement the default logits processors built from arguments and | |
| generation config. If a logit processor is passed that is already created with the arguments or a | |
| generation config an error is thrown. This feature is intended for advanced users. | |
| stopping_criteria (`StoppingCriteriaList`, *optional*): | |
| Custom stopping criteria that complement the default stopping criteria built from arguments and a | |
| generation config. If a stopping criteria is passed that is already created with the arguments or a | |
| generation config an error is thrown. This feature is intended for advanced users. | |
| prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): | |
| If provided, this function constraints the beam search to allowed tokens only at each step. If not | |
| provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and | |
| `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned | |
| on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful | |
| for constrained generation conditioned on the prefix, as described in [Autoregressive Entity | |
| Retrieval](https://arxiv.org/abs/2010.00904). | |
| synced_gpus (`bool`, *optional*, defaults to `False`): | |
| Whether to continue running the while loop until max_length (needed for ZeRO stage 3) | |
| return_timestamps (`bool`, *optional*): | |
| Whether to return the timestamps with the text. This enables the `WhisperTimestampsLogitsProcessor`. | |
| task (`bool`, *optional*): | |
| Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids` | |
| will be updated accordingly. | |
| language (`bool`, *optional*): | |
| Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can | |
| find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary. | |
| is_multilingual (`bool`, *optional*): | |
| Whether or not the model is multilingual. | |
| kwargs: | |
| Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
| forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
| specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
| Return: | |
| [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` | |
| or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. | |
| If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible | |
| [`~utils.ModelOutput`] types are: | |
| - [`~generation.GreedySearchDecoderOnlyOutput`], | |
| - [`~generation.SampleDecoderOnlyOutput`], | |
| - [`~generation.BeamSearchDecoderOnlyOutput`], | |
| - [`~generation.BeamSampleDecoderOnlyOutput`] | |
| If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible | |
| [`~utils.ModelOutput`] types are: | |
| - [`~generation.GreedySearchEncoderDecoderOutput`], | |
| - [`~generation.SampleEncoderDecoderOutput`], | |
| - [`~generation.BeamSearchEncoderDecoderOutput`], | |
| - [`~generation.BeamSampleEncoderDecoderOutput`] | |
| """ | |
| if generation_config is None: | |
| generation_config = self.generation_config | |
| if return_timestamps is not None: | |
| if not hasattr(generation_config, "no_timestamps_token_id"): | |
| raise ValueError( | |
| "You are trying to return timestamps, but the generation config is not properly set." | |
| "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`." | |
| "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363" | |
| ) | |
| generation_config.return_timestamps = return_timestamps | |
| else: | |
| generation_config.return_timestamps = False | |
| if language is not None: | |
| language = language.lower() | |
| generation_config.language = language | |
| if task is not None: | |
| generation_config.task = task | |
| forced_decoder_ids = [] | |
| if task is not None or language is not None: | |
| if hasattr(generation_config, "language"): | |
| if generation_config.language in generation_config.lang_to_id.keys(): | |
| language_token = generation_config.language | |
| elif generation_config.language in TO_LANGUAGE_CODE.keys(): | |
| language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>" | |
| elif generation_config.language in TO_LANGUAGE_CODE.values(): | |
| language_token = f"<|{generation_config.language}|>" | |
| else: | |
| is_language_code = len(generation_config.language) == 2 | |
| raise ValueError( | |
| f"Unsupported language: {generation_config.language}. Language should be one of:" | |
| f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." | |
| ) | |
| forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) | |
| else: | |
| forced_decoder_ids.append((1, None)) # automatically detect the language | |
| if hasattr(generation_config, "task"): | |
| if generation_config.task in TASK_IDS: | |
| forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) | |
| else: | |
| raise ValueError( | |
| f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`" | |
| ) | |
| else: | |
| forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) # defaults to transcribe | |
| if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps: | |
| idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 | |
| forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) | |
| # Legacy code for backward compatibility | |
| elif hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None: | |
| forced_decoder_ids = self.config.forced_decoder_ids | |
| elif ( | |
| hasattr(self.generation_config, "forced_decoder_ids") | |
| and self.generation_config.forced_decoder_ids is not None | |
| ): | |
| forced_decoder_ids = self.generation_config.forced_decoder_ids | |
| if generation_config.return_timestamps: | |
| logits_processor = [WhisperTimeStampLogitsProcessor(generation_config)] | |
| if len(forced_decoder_ids) > 0: | |
| generation_config.forced_decoder_ids = forced_decoder_ids | |
| return super().generate( | |
| inputs, | |
| generation_config, | |
| logits_processor, | |
| stopping_criteria, | |
| prefix_allowed_tokens_fn, | |
| synced_gpus, | |
| **kwargs, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| decoder_input_ids, | |
| past_key_values=None, | |
| use_cache=None, | |
| encoder_outputs=None, | |
| attention_mask=None, | |
| **kwargs, | |
| ): | |
| # cut decoder_input_ids if past is used | |
| if past_key_values is not None: | |
| decoder_input_ids = decoder_input_ids[:, -1:] | |
| return { | |
| "encoder_outputs": encoder_outputs, | |
| "past_key_values": past_key_values, | |
| "decoder_input_ids": decoder_input_ids, | |
| "use_cache": use_cache, | |
| "decoder_attention_mask": None, | |
| } | |
| # | |
| def _reorder_cache(past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
| return reordered_past | |
| class WhisperForAudioClassification(WhisperPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.encoder = WhisperEncoder(config) | |
| num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
| if config.use_weighted_layer_sum: | |
| self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
| self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
| self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def freeze_encoder(self): | |
| """ | |
| Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
| not be updated during training. Only the projection layers and classification head will be updated. | |
| """ | |
| self.encoder._freeze_parameters() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.encoder.get_input_embeddings() | |
| def set_input_embeddings(self, value: nn.Module): | |
| self.encoder.set_input_embeddings(value) | |
| def forward( | |
| self, | |
| input_features: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| Returns: | |
| Example: | |
| ```python | |
| >>> import torch | |
| >>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification | |
| >>> from datasets import load_dataset | |
| >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") | |
| >>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") | |
| >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) | |
| >>> sample = next(iter(ds)) | |
| >>> inputs = feature_extractor( | |
| ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt" | |
| ... ) | |
| >>> input_features = inputs.input_features | |
| >>> with torch.no_grad(): | |
| ... logits = model(input_features).logits | |
| >>> predicted_class_ids = torch.argmax(logits).item() | |
| >>> predicted_label = model.config.id2label[predicted_class_ids] | |
| >>> predicted_label | |
| 'af_za' | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if encoder_outputs is None: | |
| encoder_outputs = self.encoder( | |
| input_features, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if self.config.use_weighted_layer_sum: | |
| hidden_states = torch.stack(encoder_outputs, dim=1) | |
| norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
| hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
| else: | |
| hidden_states = encoder_outputs[0] | |
| hidden_states = self.projector(hidden_states) | |
| pooled_output = hidden_states.mean(dim=1) | |
| logits = self.classifier(pooled_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| # move labels to correct device to enable PP | |
| labels = labels.to(logits.device) | |
| loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + encoder_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) |