Spaces:
Runtime error
Runtime error
| import argparse | |
| import functools | |
| import glob | |
| import os | |
| import random | |
| import string | |
| import json | |
| import sys | |
| sys.path.append('../') | |
| from tqdm import tqdm | |
| import yaml | |
| from collections import defaultdict | |
| import io | |
| import warnings | |
| import subprocess | |
| import pickle | |
| import numpy as np | |
| import torch | |
| from data.data import get_audiotext_dataloader | |
| from src.factory import create_model_and_transforms | |
| from train.train_utils import Dict2Class, get_autocast, get_cast_dtype | |
| def inference_this( | |
| args, data_config, clap_config, model_config, test_dataset_name, tmp_file, | |
| temperature=1.0, num_beams=3, ckpt=-1, end_batch_idx=-2, verbose=False, | |
| ): | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" # disable the tokenizer parallelism warning | |
| model, tokenizer = create_model_and_transforms( | |
| **model_config, | |
| clap_config=clap_config, | |
| use_local_files=args.offline, | |
| gradient_checkpointing=args.gradient_checkpointing, | |
| freeze_lm_embeddings=args.freeze_lm_embeddings, | |
| ) | |
| device_id = 0 | |
| model = model.to(device_id) | |
| model.eval() | |
| if ckpt == -1: | |
| checkpoint_list = glob.glob(f"{args.expdir}/{args.run_name}/checkpoint_*.pt") | |
| resume_from_checkpoint = sorted(checkpoint_list, key=lambda x: int(x.split("_")[-1].split(".")[0]))[-1] | |
| else: | |
| resume_from_checkpoint = f"{args.expdir}/{args.run_name}/checkpoint_{ckpt}.pt" | |
| checkpoint = torch.load(resume_from_checkpoint, map_location="cpu") | |
| msd = checkpoint["model_state_dict"] | |
| msd = {k.replace("module.", ""): v for k, v in msd.items()} | |
| x,y = model.load_state_dict(msd, False) | |
| print(x) | |
| print(y) | |
| autocast = get_autocast( | |
| args.precision, cache_enabled=(not args.fsdp) | |
| ) | |
| cast_dtype = get_cast_dtype(args.precision) | |
| # model = model.to(dtype=cast_dtype) | |
| if test_dataset_name in data_config["valid_dataset_config"]: | |
| data_config["valid_dataset_config"] = {test_dataset_name: data_config["valid_dataset_config"][test_dataset_name]} | |
| else: | |
| data_config["valid_dataset_config"] = {test_dataset_name: True} | |
| all_test_AudioTextDataInfo = get_audiotext_dataloader(data_config, clap_config, tokenizer, args.batch_size, split='test') | |
| assert test_dataset_name in list(all_test_AudioTextDataInfo.keys()), "{} not a test set".format(test_dataset_name) | |
| dataloader = all_test_AudioTextDataInfo[test_dataset_name].dataloader | |
| deduplicate_tasks = ["Clotho-v2-AudioCaptioning", "audiocaps-AudioCaptioning", "MACS-AudioCaptioning", "LP-MusicCaps-MSD-AudioCaptioning", "LP-MusicCaps-MC-AudioCaptioning"] | |
| if any([test_dataset_name.startswith(x) for x in deduplicate_tasks]): | |
| deduplicate = True | |
| else: | |
| deduplicate = False | |
| if os.path.exists(tmp_file): | |
| with open(tmp_file, 'rb') as pickle_file: | |
| tmp_data = pickle.load(pickle_file) | |
| results_dic = tmp_data['results_dic'] | |
| results = tmp_data['results'] | |
| finished_batches = tmp_data['finished_batches'] | |
| print('reading tmp data from {}: {} batches already computed'.format(tmp_file, finished_batches+1)) | |
| else: | |
| tmp_data = {} | |
| results_dic = {} # for deduplicate | |
| results = [] # for non-deduplicate | |
| finished_batches = -1 | |
| print('no tmp data found; will store tmp data to {}'.format(tmp_file)) | |
| # print(len(dataloader)) | |
| # print('---------------------') | |
| from itertools import islice | |
| for batch_idx, batch in tqdm(enumerate(islice(dataloader, finished_batches, None), start=finished_batches)): | |
| # for batch_idx, batch in tqdm(enumerate(dataloader)): | |
| if end_batch_idx > 0 and batch_idx == end_batch_idx: | |
| break | |
| if batch_idx <= finished_batches: | |
| continue | |
| audio_clips = batch["audio_clips"].to(device_id, dtype=cast_dtype, non_blocking=True) | |
| audio_embed_mask = batch["audio_embed_mask"].to(device_id, dtype=cast_dtype, non_blocking=True) | |
| input_ids = batch["input_ids"].to(device_id, non_blocking=True) | |
| filenames = batch["filenames"] | |
| # print(input_ids) | |
| media_token_id = tokenizer.encode("<audio>")[-1] | |
| sep_token_id = tokenizer.sep_token_id | |
| for idx in range(input_ids.shape[0]): | |
| filename = filenames[idx] | |
| if type(filename) is list: | |
| # interleaved data | |
| filename = filename[-1] | |
| input_id = input_ids[idx] | |
| for sep_location in range(len(input_id)-1, -1, -1): | |
| # find last <SEP> | |
| if input_id[sep_location] == sep_token_id: | |
| break | |
| # print(tokenizer.decode(input_id)) | |
| prompt = input_id[:sep_location+1] | |
| prompt_decoded = tokenizer.decode(prompt).replace(tokenizer.sep_token, '') | |
| ground_truth_decoded = tokenizer.decode(input_id).split(tokenizer.sep_token)[-1].replace(tokenizer.eos_token, '').replace(tokenizer.pad_token, '').replace('<|endofchunk|>', '') | |
| if not (deduplicate and (filename, prompt_decoded) in results_dic): | |
| # print(prompt) | |
| # print(prompt_decoded) | |
| output = model.generate( | |
| audio_x=audio_clips[idx].unsqueeze(0), | |
| audio_x_mask=audio_embed_mask[idx].unsqueeze(0), | |
| lang_x=prompt.unsqueeze(0), | |
| eos_token_id=tokenizer.eos_token_id, | |
| max_new_tokens=256, | |
| temperature=temperature, | |
| )[0] | |
| output_decoded = tokenizer.decode(output).split(tokenizer.sep_token)[-1].replace(tokenizer.eos_token, '').replace(tokenizer.pad_token, '').replace('<|endofchunk|>', '') | |
| # print(ground_truth_decoded) | |
| # print('------') | |
| # print(output_decoded) | |
| if deduplicate: | |
| if (filename, prompt_decoded) in results_dic: | |
| results_dic[(filename, prompt_decoded)]['ground_truth'].append(ground_truth_decoded) | |
| else: | |
| results_dic[(filename, prompt_decoded)] = { | |
| 'ground_truth': [ground_truth_decoded], | |
| 'output': output_decoded | |
| } | |
| else: | |
| results.append((filename, prompt_decoded, ground_truth_decoded, output_decoded)) | |
| tmp_data['results_dic'] = results_dic | |
| tmp_data['results'] = results | |
| tmp_data['finished_batches'] = batch_idx | |
| with open(tmp_file, 'wb') as pickle_file: | |
| pickle.dump(tmp_data, pickle_file) | |
| if deduplicate: | |
| for (filename, prompt) in results_dic: | |
| ground_truth = '|'.join(results_dic[(filename, prompt)]['ground_truth']) | |
| output = results_dic[(filename, prompt)]['output'] | |
| results.append((filename, prompt, ground_truth, output)) | |
| # if verbose: | |
| # for filename, prompt, ground_truth, output in results: | |
| # print('-'*30) | |
| # print('filename:', filename) | |
| # print('prompt:', prompt) | |
| # print('ground_truth:', ground_truth) | |
| # print('output:', output) | |
| return results | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('-c', '--config', type=str, default='../config/config.yaml', help='yaml config path') | |
| parser.add_argument('-t', '--task', type=str, help='which task to inference') | |
| parser.add_argument('-temp', '--temperature', type=float, default=1.0, help='temperature') | |
| parser.add_argument('-nb', '--num_beams', type=int, default=1, help='num beams for beam search') | |
| parser.add_argument('--ckpt', type=int, default=-1, help='checkpoint idx, -1 means latest') | |
| parsed_args = parser.parse_args() | |
| print(parsed_args) | |
| test_dataset_name = parsed_args.task | |
| output_file = os.path.join( | |
| '../outputs/', | |
| parsed_args.task.replace('/', '-'), | |
| '{}-ckpt{}-{}.log'.format( | |
| parsed_args.config.split('/')[-1][:-5], | |
| parsed_args.ckpt, | |
| "sft" | |
| ) | |
| ) | |
| tmp_file = output_file.replace('.log', '.tmp.pickle') | |
| print('output file:', output_file) | |
| print('no previous log file; generating samples') | |
| config = yaml.load(open(parsed_args.config), Loader=yaml.FullLoader) | |
| # print(config) | |
| # print('----------------------') | |
| data_config = config['data_config'] | |
| model_config = config['model_config'] | |
| print(model_config) | |
| clap_config = config['clap_config'] | |
| clap_config = config['clap_config'] | |
| mert_config = config['mert_config'] | |
| args = Dict2Class(config['train_config']) | |
| results = inference_this( | |
| args, data_config, clap_config, model_config, test_dataset_name, | |
| temperature=float(parsed_args.temperature), | |
| num_beams=int(parsed_args.num_beams), | |
| ckpt=parsed_args.ckpt, | |
| verbose=True, | |
| tmp_file=tmp_file, | |
| ) | |
| if __name__ == "__main__": | |
| main() |