Spaces:
Running
Running
Create playground_utils.py
Browse files- playground_utils.py +60 -0
playground_utils.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from task import tasks_config
|
| 3 |
+
from pipeline_utils import handle_task_change, review_training_choices, test_pipeline
|
| 4 |
+
from playground_utils import create_playground_header, create_playground_footer, create_tabs_header
|
| 5 |
+
|
| 6 |
+
playground = gr.Blocks()
|
| 7 |
+
|
| 8 |
+
with playground:
|
| 9 |
+
create_playground_header()
|
| 10 |
+
with gr.Tabs():
|
| 11 |
+
with gr.TabItem("Text"):
|
| 12 |
+
radio, test_pipeline_button = create_tabs_header()
|
| 13 |
+
with gr.Row(visible=True) as use_pipeline:
|
| 14 |
+
with gr.Column():
|
| 15 |
+
task_dropdown = gr.Dropdown(
|
| 16 |
+
choices=[(task["name"], task_id)
|
| 17 |
+
for task_id, task in tasks_config.items()],
|
| 18 |
+
label="Task",
|
| 19 |
+
interactive=True,
|
| 20 |
+
info="Select Pipelines for natural language processing tasks or type if you have your own."
|
| 21 |
+
)
|
| 22 |
+
model_dropdown = gr.Dropdown(
|
| 23 |
+
[], label="Model", info="Select appropriate Model based on the task you selected")
|
| 24 |
+
prompt_textarea = gr.TextArea(
|
| 25 |
+
label="Prompt",
|
| 26 |
+
value="Enter your prompt here",
|
| 27 |
+
text_align="left",
|
| 28 |
+
info="Copy/Paste or type your prompt to try out. Make sure to provide clear prompt or try with different prompts"
|
| 29 |
+
)
|
| 30 |
+
context_for_question_answer = gr.TextArea(
|
| 31 |
+
label="Context",
|
| 32 |
+
value="Enter Context for your question here",
|
| 33 |
+
visible=False,
|
| 34 |
+
interactive=True,
|
| 35 |
+
info="Question answering tasks return an answer given a question. If you’ve ever asked a virtual assistant like Alexa, Siri or Google what the weather is, then you’ve used a question answering model before. Here, we are doing Extractive(extract the answer from the given context) Question answering. "
|
| 36 |
+
)
|
| 37 |
+
task_dropdown.change(handle_task_change,
|
| 38 |
+
inputs=[task_dropdown],
|
| 39 |
+
outputs=[context_for_question_answer,
|
| 40 |
+
model_dropdown, task_dropdown])
|
| 41 |
+
with gr.Column():
|
| 42 |
+
text = gr.TextArea(label="Generated Text")
|
| 43 |
+
radio.change(review_training_choices,
|
| 44 |
+
inputs=radio, outputs=use_pipeline)
|
| 45 |
+
test_pipeline_button.click(test_pipeline,
|
| 46 |
+
inputs=[
|
| 47 |
+
task_dropdown, model_dropdown, prompt_textarea, context_for_question_answer],
|
| 48 |
+
outputs=text)
|
| 49 |
+
with gr.TabItem("Image"):
|
| 50 |
+
radio, test_pipeline_button = create_tabs_header()
|
| 51 |
+
gr.Markdown("""
|
| 52 |
+
> WIP
|
| 53 |
+
""")
|
| 54 |
+
with gr.TabItem("Audio"):
|
| 55 |
+
radio, test_pipeline_button = create_tabs_header()
|
| 56 |
+
gr.Markdown("""
|
| 57 |
+
> WIP
|
| 58 |
+
""")
|
| 59 |
+
create_playground_footer()
|
| 60 |
+
playground.launch()
|