import gradio as gr from transformers import pipeline, set_seed chef = pipeline("text-generation", "nschenone/rap-distil") def generate(text): max_length: int = 100 num_beams: int = 5 num_return_sequences: int = 1 no_repeat_ngram_size: int = 3 early_stopping: bool = True skip_special_tokens: bool = True temperature: float = 1.5 set_seed(0) generated = chef( text_inputs=text, max_length=max_length, num_beams=num_beams, num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, early_stopping=early_stopping, skip_special_tokens=skip_special_tokens, temperature=temperature ) return [i["generated_text"] for i in generated] iface = gr.Interface(fn=generate, inputs="text", outputs="text") iface.launch()