import gradio as gr import spaces import random import torch from diffusers import FluxPipeline from huggingface_hub.utils import RepositoryNotFoundError pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda") @spaces.GPU(duration=70) def generate(prompt, negative_prompt, width, height, sample_steps, lora_id): try: pipeline.load_lora_weights(lora_id) except RepositoryNotFoundError: raise ValueError(f"Recieved invalid FLUX LoRA.") return pipeline(prompt=f"{prompt}\n(NOT {negative_prompt}:2)", width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(random.randint(42, 69)), guidance_scale=7).images[0] with gr.Blocks() as interface: with gr.Column(): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", info="What do you want?", value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", lines=4, interactive=True) negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True) with gr.Column(): generate_button = gr.Button("Generate") output = gr.Image() with gr.Row(): with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(): with gr.Column(): width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True) height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True) with gr.Column(): sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True) lora_id = gr.Textbox(label="Adapter Repository", info="ID of the FLUX LoRA", value="pepper13/fluxfw") generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, lora_id], outputs=[output]) if __name__ == "__main__": interface.launch()