from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST] {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.9, repetition_penalty=1.2,
):
temperature = max(0.01, float(temperature))
top_p = max(0.0, float(top_p))
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs = [
gr.Slider(
label="Temperature",
value=0.7,
minimum=0.1,
maximum=1.0,
step=0.05,
interactive=True,
info="Controls the creativity of the response. Higher values mean more randomness.",
),
gr.Slider(
label="Max Tokens",
value=256,
minimum=32,
maximum=1024,
step=32,
interactive=True,
info="The maximum number of tokens to generate.",
),
gr.Slider(
label="Top-p",
value=0.9,
minimum=0.1,
maximum=1.0,
step=0.05,
interactive=True,
info="Nucleus sampling. Lower values generate more deterministic responses.",
),
gr.Slider(
label="Repetition Penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Discourages repeated phrases in the output.",
),
]
css = """
#chatbox {
height: 600px;
overflow: auto;
border: none;
box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1);
border-radius: 8px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
Powered by the MedlarAI model. Your assistant for answering questions, generating text, and exploring ideas.