Spaces:
Running
on
Zero
Running
on
Zero
πwπ
Browse files- README.md +1 -1
- app.py +47 -0
- requirements.txt +16 -0
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Background Removal
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: Background Removal
|
| 3 |
+
emoji: πwπ
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_imageslider import ImageSlider
|
| 3 |
+
from loadimg import load_img
|
| 4 |
+
import spaces
|
| 5 |
+
from transformers import AutoModelForImageSegmentation
|
| 6 |
+
import torch
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
|
| 9 |
+
# torch.set_float32_matmul_precision(['high', 'highest'][0])
|
| 10 |
+
|
| 11 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True,device="auto",torch_dtype=torch.float16)
|
| 12 |
+
|
| 13 |
+
transform_image = transforms.Compose([
|
| 14 |
+
transforms.Resize((1024, 1024)),
|
| 15 |
+
transforms.ToTensor(),
|
| 16 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 17 |
+
])
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@spaces.GPU
|
| 22 |
+
def fn(image):
|
| 23 |
+
im = load_img(image)
|
| 24 |
+
im = im.convert('RGB')
|
| 25 |
+
image = load_img(im)
|
| 26 |
+
input_images = transform_image(image).unsqueeze(0).to('cuda')
|
| 27 |
+
# Prediction
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 30 |
+
pred = preds[0].squeeze()
|
| 31 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 32 |
+
out = (pred_pil , im)
|
| 33 |
+
return out
|
| 34 |
+
|
| 35 |
+
slider1 = ImageSlider(label="birefnet", type="pil")
|
| 36 |
+
slider2 = ImageSlider(label="RMBG", type="pil")
|
| 37 |
+
image = gr.Image(label="Upload an image")
|
| 38 |
+
text = gr.Textbox(label="Paste an image URL")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
tab1 = gr.Interface(fn,inputs= image, outputs= slider1, api_name="image")
|
| 42 |
+
tab2 = gr.Interface(fn,inputs= text, outputs= slider2, api_name="text")
|
| 43 |
+
|
| 44 |
+
demo = gr.TabbedInterface([tab1,tab2],["image","text"],title="RMBG with image slider")
|
| 45 |
+
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
accelerate
|
| 3 |
+
opencv-python
|
| 4 |
+
spaces
|
| 5 |
+
pillow
|
| 6 |
+
numpy
|
| 7 |
+
timm
|
| 8 |
+
kornia
|
| 9 |
+
prettytable
|
| 10 |
+
typing
|
| 11 |
+
scikit-image
|
| 12 |
+
huggingface_hub
|
| 13 |
+
transformers>=4.39.1
|
| 14 |
+
gradio
|
| 15 |
+
gradio_imageslider
|
| 16 |
+
loadimg>=0.1.1
|