Spaces:
Running
on
Zero
Running
on
Zero
πwπ
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ from torchvision import transforms
|
|
| 8 |
|
| 9 |
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
| 10 |
|
| 11 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained('
|
| 12 |
birefnet.to("cuda")
|
| 13 |
transform_image = transforms.Compose([
|
| 14 |
transforms.Resize((1024, 1024)),
|
|
@@ -22,6 +22,8 @@ transform_image = transforms.Compose([
|
|
| 22 |
def fn(image):
|
| 23 |
im = load_img(image)
|
| 24 |
im = im.convert('RGB')
|
|
|
|
|
|
|
| 25 |
image = load_img(im)
|
| 26 |
input_images = transform_image(image).unsqueeze(0).to('cuda')
|
| 27 |
# Prediction
|
|
@@ -29,8 +31,9 @@ def fn(image):
|
|
| 29 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 30 |
pred = preds[0].squeeze()
|
| 31 |
pred_pil = transforms.ToPILImage()(pred)
|
| 32 |
-
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
slider1 = ImageSlider(label="birefnet", type="pil")
|
| 36 |
slider2 = ImageSlider(label="birefnet", type="pil")
|
|
|
|
| 8 |
|
| 9 |
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
| 10 |
|
| 11 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
|
| 12 |
birefnet.to("cuda")
|
| 13 |
transform_image = transforms.Compose([
|
| 14 |
transforms.Resize((1024, 1024)),
|
|
|
|
| 22 |
def fn(image):
|
| 23 |
im = load_img(image)
|
| 24 |
im = im.convert('RGB')
|
| 25 |
+
image_size = im.size
|
| 26 |
+
origin = im.copy()
|
| 27 |
image = load_img(im)
|
| 28 |
input_images = transform_image(image).unsqueeze(0).to('cuda')
|
| 29 |
# Prediction
|
|
|
|
| 31 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 32 |
pred = preds[0].squeeze()
|
| 33 |
pred_pil = transforms.ToPILImage()(pred)
|
| 34 |
+
mask = pred_pil.resize(image_size)
|
| 35 |
+
image.putalpha(mask)
|
| 36 |
+
return (image , origin)
|
| 37 |
|
| 38 |
slider1 = ImageSlider(label="birefnet", type="pil")
|
| 39 |
slider2 = ImageSlider(label="birefnet", type="pil")
|