import streamlit as st from transformers import T5ForConditionalGeneration, T5TokenizerFast, T5Config @st.cache(allow_output_mutation=True, suppress_st_warning=True) def load_model(): model_name = "north/demo-deuncaser-base" config = T5Config.from_pretrained(model_name) #Debug #st.text(config) #st.text("north/demo-nynorsk-base") model = T5ForConditionalGeneration.from_pretrained(model_name,config=config) tokenizer = T5TokenizerFast.from_pretrained(model_name) return (model, tokenizer) def deuncase(model, tokenizer, text): encoded_txt = tokenizer(text, return_tensors="pt") generated_tokens = model.generate( **encoded_txt ) return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) st.title("DeUnCaser") expander = st.sidebar.expander("About") expander.write("This web app adds spaces, punctation and capitalisation back into the text.") option = st.sidebar.selectbox( "Examples:", ("tirsdag var travel for ukrainas president volodymyr zelenskyj på morgenen tok han imot polens statsminister mateusz morawiecki","tirsdagvartravelforukrainaspresidentvolodymyrzelenskyjpåkveldentokhanimotpolensstatsministermateuszmorawiecki","deterikkelettåholderedepåstoreogsmåbokstavermanmåforeksempelhuskestorforbokstavnårmanskriveromkrimhalvøyamenkunbrukelitenforbokstavnårmanhenvisertilenkrimroman","detteerenlitendemosomerlagetavperegilkummervoldhanerenforskersomtidligerejobbetvednasjonalbiblioteketimoirana")) st.sidebar.write("You can use the examples above, but for best effect: Copy text from the Internet, and remove spaces, puctation, cases etc. Try to restore the text.") text = st.text_area(f"Corrupted text: ",max_chars=1000, value=option) st.text("Fixed text: ") if text: model, tokenizer = load_model() translated_text = deuncase(model, tokenizer, text) st.write(translated_text[0] if translated_text else "Unknown Error Translating Text")