Spaces:
Running
Running
import gradio as gr | |
import joblib | |
import numpy as np | |
import pandas as pd | |
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC | |
from sklearn.preprocessing import MinMaxScaler | |
import torch | |
from transformers import BertTokenizer, BertModel | |
from lime.lime_tabular import LimeTabularExplainer | |
from math import expm1 | |
# Load AMP Classifier and Scaler | |
model = joblib.load("RF.joblib") | |
scaler = joblib.load("norm (4).joblib") | |
# Load ProtBert | |
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False) | |
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
protbert_model = protbert_model.to(device).eval() | |
# Define selected features (put your complete list here) | |
selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1", | |
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001", | |
"_PolarizabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", | |
"_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001", | |
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050", | |
"_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", | |
"_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001", | |
"_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V", | |
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE", | |
"LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV", | |
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4", | |
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26", | |
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29", | |
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26", | |
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30", | |
"GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25", | |
"GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29", | |
"GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", | |
"GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24", | |
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25", | |
"GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", | |
"GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28", | |
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25", | |
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29", | |
"GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", | |
"APAAC15", "APAAC18", "APAAC19", "APAAC24"] | |
# Dummy data for LIME | |
sample_data = np.random.rand(100, len(selected_features)) | |
explainer = LimeTabularExplainer( | |
training_data=sample_data, | |
feature_names=selected_features, | |
class_names=["AMP", "Non-AMP"], | |
mode="classification" | |
) | |
# Feature extraction function | |
def extract_features(sequence): | |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"]) | |
if len(sequence) < 10: | |
return "Error: Sequence too short." | |
try: | |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence) | |
filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]} | |
ctd_features = CTD.CalculateCTD(sequence) | |
auto_features = Autocorrelation.CalculateAutoTotal(sequence) | |
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9) | |
all_features_dict = {} | |
all_features_dict.update(ctd_features) | |
all_features_dict.update(filtered_dipeptide_features) | |
all_features_dict.update(auto_features) | |
all_features_dict.update(pseudo_features) | |
feature_df_all = pd.DataFrame([all_features_dict]) | |
normalized_array = scaler.transform(feature_df_all.values) | |
normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns) | |
if not set(selected_features).issubset(normalized_df.columns): | |
return "Error: Some selected features are missing." | |
selected_df = normalized_df[selected_features].fillna(0) | |
return selected_df.values | |
except Exception as e: | |
return f"Error in feature extraction: {str(e)}" | |
# MIC prediction function | |
def predictmic(sequence): | |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"]) | |
if len(sequence) < 10: | |
return {"Error": "Sequence too short or invalid."} | |
seq_spaced = ' '.join(list(sequence)) | |
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512) | |
tokens = {k: v.to(device) for k, v in tokens.items()} | |
with torch.no_grad(): | |
outputs = protbert_model(**tokens) | |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1) | |
bacteria_config = { | |
"E.coli": {"model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None}, | |
"S.aureus": {"model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None}, | |
"P.aeruginosa": {"model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None}, | |
"K.Pneumonia": {"model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"} | |
} | |
mic_results = {} | |
for bacterium, cfg in bacteria_config.items(): | |
try: | |
scaler = joblib.load(cfg["scaler"]) | |
scaled = scaler.transform(embedding) | |
transformed = joblib.load(cfg["pca"]).transform(scaled) if cfg["pca"] else scaled | |
model = joblib.load(cfg["model"]) | |
mic_log = model.predict(transformed)[0] | |
mic = round(expm1(mic_log), 3) | |
mic_results[bacterium] = mic | |
except Exception as e: | |
mic_results[bacterium] = f"Error: {str(e)}" | |
return mic_results | |
# Main prediction function | |
def full_prediction(sequence): | |
features = extract_features(sequence) | |
if isinstance(features, str): | |
return features | |
prediction = model.predict(features)[0] | |
probabilities = model.predict_proba(features)[0] | |
try: | |
class_index = list(model.classes_).index(prediction) | |
confidence = round(probabilities[class_index] * 100, 2) | |
except Exception: | |
confidence = "Unknown" | |
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP" | |
result = f"Prediction: {amp_result}\nConfidence: {confidence}%\n" | |
if prediction == 0: | |
mic_values = predictmic(sequence) | |
result += "\nPredicted MIC Values (μM):\n" | |
for org, mic in mic_values.items(): | |
result += f"- {org}: {mic}\n" | |
else: | |
result += "\nMIC prediction skipped for Non-AMP sequences.\n" | |
explanation = explainer.explain_instance( | |
data_row=features[0], | |
predict_fn=model.predict_proba, | |
num_features=10 | |
) | |
result += "\nTop Features Influencing Prediction:\n" | |
for feat, weight in explanation.as_list(): | |
result += f"- {feat}: {round(weight, 4)}\n" | |
return result | |
# Gradio UI | |
iface = gr.Interface( | |
fn=full_prediction, | |
inputs=gr.Textbox(label="Enter Protein Sequence"), | |
outputs=gr.Textbox(label="Results"), | |
title="AMP & MIC Predictor + LIME Explanation", | |
description="Paste an amino acid sequence (≥10 characters). Get AMP classification, MIC predictions, and LIME interpretability insights." | |
) | |
iface.launch(share=True) | |