File size: 5,010 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
 
e199881
51159d5
942bf87
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
3b84715
e199881
 
 
 
 
 
 
 
 
85c36de
47bb3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e199881
 
 
 
85c36de
e199881
8efdc57
47bb3e1
85c36de
fc7380a
85c36de
e199881
 
 
 
 
c9a939f
e199881
85c36de
 
 
 
 
 
 
 
 
fc7380a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler

model = joblib.load("RF.joblib")
scaler = joblib.load("norm.joblib")

selected_features =  [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

def extract_features(sequence):
    aa_features = AAComposition.CalculateAADipeptideComposition(sequence)
    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    ctd_features = CTD.CalculateCTD(sequence)
    pseaac_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)

    all_features = {**aa_features, **auto_features, **ctd_features, **pseaac_features}

    # Convert to DataFrame
    feature_df = pd.DataFrame([all_features])

    print("Extracted Features:", feature_df.columns.tolist())  # Debugging line

    # Ensure all selected features are present
    missing_features = [f for f in selected_features if f not in feature_df.columns]
    extra_features = [f for f in feature_df.columns if f not in selected_features]

    if missing_features:
        print(f"Missing Features ({len(missing_features)}):", missing_features)
    
    if extra_features:
        print(f"Extra Features ({len(extra_features)}):", extra_features)

    # Fix missing columns by adding them with default values (0)
    for feature in missing_features:
        feature_df[feature] = 0

    # Select only the required features
    feature_df = feature_df[selected_features]

    # Normalize
    normalized_features = scaler.transform(feature_df)

    return normalized_features


def predict(sequence):
    """Predict if the sequence is an AMP or not."""
    features = extract_features(sequence)
    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]
    
    prob_amp = probabilities[0]
    prob_non_amp = probabilities[1]

    return f"{prob_amp * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)" if prediction == 0 else f"{prob_non_amp * 100:.2f}% chance of being Non-AMP"

iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=gr.Label(label="Prediction"),
    title="AMP Classifier",
    description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
)

iface.launch(share=True)