Spaces:
Running
Running
File size: 5,010 Bytes
85c36de 942bf87 51a3749 ea9a1bf e199881 51a3749 e199881 51159d5 942bf87 e199881 11e1095 dc9275e 3b84715 e199881 85c36de 47bb3e1 e199881 85c36de e199881 8efdc57 47bb3e1 85c36de fc7380a 85c36de e199881 c9a939f e199881 85c36de fc7380a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm.joblib")
selected_features = [
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
"_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
"_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
"_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
"_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
"_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
"A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
"HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
"MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
"GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
"GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
"GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
"GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
"GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
"GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
"GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
"GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
"GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
"APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
"APAAC24"
]
def extract_features(sequence):
aa_features = AAComposition.CalculateAADipeptideComposition(sequence)
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
ctd_features = CTD.CalculateCTD(sequence)
pseaac_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
all_features = {**aa_features, **auto_features, **ctd_features, **pseaac_features}
# Convert to DataFrame
feature_df = pd.DataFrame([all_features])
print("Extracted Features:", feature_df.columns.tolist()) # Debugging line
# Ensure all selected features are present
missing_features = [f for f in selected_features if f not in feature_df.columns]
extra_features = [f for f in feature_df.columns if f not in selected_features]
if missing_features:
print(f"Missing Features ({len(missing_features)}):", missing_features)
if extra_features:
print(f"Extra Features ({len(extra_features)}):", extra_features)
# Fix missing columns by adding them with default values (0)
for feature in missing_features:
feature_df[feature] = 0
# Select only the required features
feature_df = feature_df[selected_features]
# Normalize
normalized_features = scaler.transform(feature_df)
return normalized_features
def predict(sequence):
"""Predict if the sequence is an AMP or not."""
features = extract_features(sequence)
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
prob_amp = probabilities[0]
prob_non_amp = probabilities[1]
return f"{prob_amp * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)" if prediction == 0 else f"{prob_non_amp * 100:.2f}% chance of being Non-AMP"
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(label="Enter Protein Sequence"),
outputs=gr.Label(label="Prediction"),
title="AMP Classifier",
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
)
iface.launch(share=True)
|