import gradio as gr import requests from transformers import pipeline # Load NLP model zero_shot = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # 🎁 Web search for gift suggestions def search_gifts(query): amazon_url = f"https://www.amazon.in/s?k={query.replace(' ', '+')}" igp_url = f"https://www.igp.com/search?q={query.replace(' ', '+')}" indiamart_url = f"https://dir.indiamart.com/search.mp?ss={query.replace(' ', '+')}" return {"Amazon": amazon_url, "IGP": igp_url, "IndiaMart": indiamart_url} # 🎯 Main function for gift recommendation def recommend_gifts(text): if not text: return "Please enter a description." # NLP Processing categories = ["art", "music", "tech", "travel", "books", "fashion", "fitness", "gaming"] results = zero_shot(text, categories) # Get top interest top_interest = results["labels"][0] # Search for gifts based on interest links = search_gifts(top_interest) return { "Predicted Interest": top_interest, "Gift Suggestions": links } # 🎨 Gradio UI for easy interaction demo = gr.Interface( fn=recommend_gifts, inputs="text", outputs="json", title="🎁 AI Gift Recommender", description="Enter details about the person you are buying a gift for, and get personalized suggestions with shopping links!", ) # 🚀 Launch Gradio App if __name__ == "__main__": demo.launch()