import gradio as gr from transformers import pipeline classifier3 = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-bert-base-uncased') classifier4 = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-xlnet-base-cased') def predict(text): prediction3 = "Model 3 " + str(classifier3(text)) prediction4 = "\nModel 4 " + str(classifier4(text)) return prediction3 + prediction4 ifg = gr.Interface(fn=predict, inputs=[gr.Textbox(placeholder='Escribe aquĆ­...')], outputs="text") ifg.launch(share=True)