import gradio as gr from transformers import pipeline classifier = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-xlnet-base-cased') def predict(text): prediction = classifier(text) score = int(round(prediction[0]['score'] * 100)) if prediction[0]['label'] == "LABEL_0": output = f"Negative sentiment with a confidence level of {score}%." else: output = f"Positive sentiment with a confidence level of {score}%." return output iface = gr.Interface(fn=predict, inputs=[gr.Textbox(placeholder='Escribe aquĆ­...')], outputs="text") iface.launch(share=True)