# import gradio as gr # from transformers import pipeline # classifier = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-xlnet-base-cased') # def predict(text): # prediction = classifier(text) # return prediction[0] # iface = gr.Interface(fn=predict, inputs=[gr.Textbox(placeholder='Escribe aquí...')], outputs="text") # iface.launch(share=True) from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.text.all import * # Cargar el primer modelo repo_id1 = "nlmaldonadog/AWD_LSTM_P7" learner1 = from_pretrained_fastai(repo_id1) labels1 = learner1.dls.vocab def predict1(text): pred,pred_idx,probs = learner1.predict(text) return str({labels1[i]: float(probs[i]) for i in range(len(labels1))}) texto = gr.Textbox(placeholder='Escribe aquí...') # Creamos las interfaces y las lanzamos. gr.Interface(fn=predict1, inputs=[texto], outputs="text").launch(share=True)