|
import gradio as gr |
|
|
|
from transformers import pipeline |
|
|
|
classifier3 = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-bert-base-uncased') |
|
classifier4 = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-xlnet-base-cased') |
|
|
|
def val_label(lab): |
|
if lab == "LABEL_1": |
|
return "Positive" |
|
return "Negative" |
|
|
|
def predict(text): |
|
m3 = classifier3(text)[0] |
|
prediction = f"Model 3: {val_label(m3['label'])} with {m3['score']} of confidence.\nModel 4: {val_label(m4['label'])} with {m4['score']} of confidence." |
|
return prediction |
|
|
|
ifg = gr.Interface(fn=predict, inputs=[gr.Textbox(placeholder='Escribe aquí...')], outputs="text") |
|
ifg.launch(share=True) |