nlmaldonadog's picture
Update app.py
48edf57 verified
raw
history blame
731 Bytes
import gradio as gr
from transformers import pipeline
classifier3 = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-bert-base-uncased')
classifier4 = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-xlnet-base-cased')
def val_label(lab):
if lab == "LABEL_1":
return "Positive"
return "Negative"
def predict(text):
m3 = classifier3(text)[0]
prediction = f"Model 3: {val_label(m3['label'])} with {m3['score']} of confidence.\nModel 4: {val_label(m4['label'])} with {m4['score']} of confidence."
return prediction
ifg = gr.Interface(fn=predict, inputs=[gr.Textbox(placeholder='Escribe aquí...')], outputs="text")
ifg.launch(share=True)