nlmaldonadog's picture
Update app.py
8aa9405 verified
raw
history blame
634 Bytes
import gradio as gr
from transformers import pipeline
classifier = pipeline('text-classification', model='nlmaldonadog/clasificador-rotten-tomatoes-xlnet-base-cased')
def predict(text):
prediction = classifier(text)
score = int(round(prediction[0]['score'] * 100))
if prediction[0]['label'] == "LABEL_0":
output = f"Negative sentiment with a confidence level of {score}%."
else:
output = f"Positive sentiment with a confidence level of {score}%."
return output
iface = gr.Interface(fn=predict, inputs=[gr.Textbox(placeholder='Escribe aquí...')], outputs="text")
iface.launch(share=True)