Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,9 @@ import os
|
|
3 |
from dotenv import load_dotenv
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
-
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
7 |
from langchain_openai import OpenAIEmbeddings,ChatOpenAI
|
|
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
@@ -21,7 +22,6 @@ import langchain
|
|
21 |
langchain.verbose = False
|
22 |
|
23 |
|
24 |
-
|
25 |
def get_pdf_text(pdf_docs):
|
26 |
text = ""
|
27 |
for pdf in pdf_docs:
|
@@ -41,35 +41,50 @@ def get_text_chunks(text):
|
|
41 |
return chunks
|
42 |
|
43 |
def get_vectorstore(text_chunks,selected_embedding):
|
|
|
44 |
if selected_embedding == 'OpenAI':
|
45 |
-
print('OpenAI embedding')
|
46 |
embeddings = OpenAIEmbeddings()
|
47 |
elif selected_embedding == 'Instructor-xl':
|
48 |
-
|
49 |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
52 |
vectorstore.save_local("faiss_index")
|
53 |
return vectorstore
|
54 |
|
55 |
def load_vectorstore(text_chunks,selected_embedding):
|
|
|
56 |
if selected_embedding == 'OpenAI':
|
57 |
-
print('OpenAI embedding')
|
58 |
embeddings = OpenAIEmbeddings()
|
59 |
elif selected_embedding == 'Instructor-xl':
|
60 |
-
print('Instructor-xl embedding')
|
61 |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
62 |
vectorstore = FAISS.load_local("faiss_index", embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
return vectorstore
|
64 |
|
65 |
-
def get_conversation_chain(vectorstore,selected_llm):
|
66 |
-
|
67 |
-
|
68 |
-
llm = ChatOpenAI()
|
69 |
-
|
70 |
|
|
|
|
|
|
|
|
|
71 |
elif selected_llm == 'Llama2':
|
72 |
-
|
73 |
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
74 |
hf_auth = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
75 |
|
@@ -96,7 +111,7 @@ def get_conversation_chain(vectorstore,selected_llm):
|
|
96 |
config=model_config,
|
97 |
quantization_config=bnb_config,
|
98 |
device_map='auto',
|
99 |
-
token=
|
100 |
)
|
101 |
else:
|
102 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
@@ -104,7 +119,7 @@ def get_conversation_chain(vectorstore,selected_llm):
|
|
104 |
trust_remote_code=True,
|
105 |
config=model_config,
|
106 |
device_map='auto',
|
107 |
-
token=
|
108 |
)
|
109 |
|
110 |
# enable evaluation mode to allow model inference
|
@@ -113,7 +128,7 @@ def get_conversation_chain(vectorstore,selected_llm):
|
|
113 |
|
114 |
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
115 |
model_id,
|
116 |
-
token=
|
117 |
)
|
118 |
|
119 |
pipeline = transformers.pipeline(
|
@@ -122,17 +137,20 @@ def get_conversation_chain(vectorstore,selected_llm):
|
|
122 |
tokenizer=tokenizer,
|
123 |
return_full_text=True, # langchain expects the full text
|
124 |
task='text-generation',
|
125 |
-
temperature=
|
126 |
max_new_tokens=512, # max number of tokens to generate in the output
|
127 |
repetition_penalty=1.1 # without this output begins repeating
|
128 |
)
|
129 |
|
130 |
llm = HuggingFacePipeline(pipeline=pipeline)
|
131 |
|
|
|
|
|
132 |
# Generic LLM
|
133 |
memory = ConversationBufferMemory(
|
134 |
memory_key='chat_history', return_messages=True)
|
135 |
-
|
|
|
136 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
137 |
llm=llm,
|
138 |
retriever=vectorstore.as_retriever(),
|
@@ -178,8 +196,9 @@ def main():
|
|
178 |
pdf_docs = st.file_uploader(
|
179 |
"Upload your new PDFs here and click on 'Process' or load the last upload by clicking on 'Load'", accept_multiple_files=True)
|
180 |
|
181 |
-
selected_embedding = st.radio("Which Embedding?",["OpenAI", "Instructor-xl"])
|
182 |
selected_llm = st.radio("Which LLM?",["OpenAI", "Llama2"])
|
|
|
183 |
|
184 |
if st.button("Process"):
|
185 |
with st.spinner("Processing"):
|
@@ -194,7 +213,7 @@ def main():
|
|
194 |
|
195 |
# create conversation chain
|
196 |
st.session_state.conversation = get_conversation_chain(
|
197 |
-
vectorstore,selected_llm)
|
198 |
|
199 |
if st.button("Load"):
|
200 |
with st.spinner("Processing"):
|
@@ -204,7 +223,7 @@ def main():
|
|
204 |
|
205 |
# create conversation chain
|
206 |
st.session_state.conversation = get_conversation_chain(
|
207 |
-
vectorstore,selected_llm)
|
208 |
|
209 |
if st.session_state.conversation:
|
210 |
st.header("VerAi :books:")
|
@@ -216,4 +235,3 @@ def main():
|
|
216 |
|
217 |
if __name__ == '__main__':
|
218 |
main()
|
219 |
-
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings,HuggingFaceEmbeddings,CohereEmbeddings
|
7 |
from langchain_openai import OpenAIEmbeddings,ChatOpenAI
|
8 |
+
from langchain_community.chat_models import ChatCohere
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
22 |
langchain.verbose = False
|
23 |
|
24 |
|
|
|
25 |
def get_pdf_text(pdf_docs):
|
26 |
text = ""
|
27 |
for pdf in pdf_docs:
|
|
|
41 |
return chunks
|
42 |
|
43 |
def get_vectorstore(text_chunks,selected_embedding):
|
44 |
+
print('Selected Embedding: ' + selected_embedding)
|
45 |
if selected_embedding == 'OpenAI':
|
|
|
46 |
embeddings = OpenAIEmbeddings()
|
47 |
elif selected_embedding == 'Instructor-xl':
|
48 |
+
|
49 |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
50 |
+
elif selected_embedding == 'Cohere-multilingual-v3.0':
|
51 |
+
|
52 |
+
embeddings = CohereEmbeddings(
|
53 |
+
model="embed-multilingual-v3.0",
|
54 |
+
cohere_api_key=os.environ.get("COHERE_API_KEY")
|
55 |
+
)
|
56 |
|
57 |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
58 |
vectorstore.save_local("faiss_index")
|
59 |
return vectorstore
|
60 |
|
61 |
def load_vectorstore(text_chunks,selected_embedding):
|
62 |
+
print('Selected Embedding: ' + selected_embedding)
|
63 |
if selected_embedding == 'OpenAI':
|
|
|
64 |
embeddings = OpenAIEmbeddings()
|
65 |
elif selected_embedding == 'Instructor-xl':
|
|
|
66 |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
67 |
vectorstore = FAISS.load_local("faiss_index", embeddings)
|
68 |
+
elif selected_embedding == 'Cohere-multilingual-v3.0':
|
69 |
+
|
70 |
+
embeddings = CohereEmbeddings(
|
71 |
+
model="embed-multilingual-v3.0",
|
72 |
+
cohere_api_key=os.environ.get("COHERE_API_KEY")
|
73 |
+
)
|
74 |
+
|
75 |
+
vectorstore = FAISS.load_local("faiss_index", embeddings)
|
76 |
return vectorstore
|
77 |
|
78 |
+
def get_conversation_chain(vectorstore,selected_llm,selected_temperature):
|
79 |
+
print('Seleted LLM: ' + selected_llm)
|
80 |
+
print('Selected Temperature: ' + str(selected_temperature))
|
|
|
|
|
81 |
|
82 |
+
if selected_llm == 'OpenAI':
|
83 |
+
#openai_model = "gpt-4-turbo-preview"
|
84 |
+
openai_model = "gpt-3.5-turbo"
|
85 |
+
llm = ChatOpenAI(model=openai_model,temperature=selected_temperature)
|
86 |
elif selected_llm == 'Llama2':
|
87 |
+
|
88 |
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
89 |
hf_auth = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
90 |
|
|
|
111 |
config=model_config,
|
112 |
quantization_config=bnb_config,
|
113 |
device_map='auto',
|
114 |
+
token=os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
115 |
)
|
116 |
else:
|
117 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
119 |
trust_remote_code=True,
|
120 |
config=model_config,
|
121 |
device_map='auto',
|
122 |
+
token=os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
123 |
)
|
124 |
|
125 |
# enable evaluation mode to allow model inference
|
|
|
128 |
|
129 |
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
130 |
model_id,
|
131 |
+
token=os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
132 |
)
|
133 |
|
134 |
pipeline = transformers.pipeline(
|
|
|
137 |
tokenizer=tokenizer,
|
138 |
return_full_text=True, # langchain expects the full text
|
139 |
task='text-generation',
|
140 |
+
temperature=selected_temperature, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
141 |
max_new_tokens=512, # max number of tokens to generate in the output
|
142 |
repetition_penalty=1.1 # without this output begins repeating
|
143 |
)
|
144 |
|
145 |
llm = HuggingFacePipeline(pipeline=pipeline)
|
146 |
|
147 |
+
|
148 |
+
|
149 |
# Generic LLM
|
150 |
memory = ConversationBufferMemory(
|
151 |
memory_key='chat_history', return_messages=True)
|
152 |
+
|
153 |
+
|
154 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
155 |
llm=llm,
|
156 |
retriever=vectorstore.as_retriever(),
|
|
|
196 |
pdf_docs = st.file_uploader(
|
197 |
"Upload your new PDFs here and click on 'Process' or load the last upload by clicking on 'Load'", accept_multiple_files=True)
|
198 |
|
199 |
+
selected_embedding = st.radio("Which Embedding?",["Cohere-multilingual-v3.0","OpenAI", "Instructor-xl"])
|
200 |
selected_llm = st.radio("Which LLM?",["OpenAI", "Llama2"])
|
201 |
+
selected_temperature = st.slider('Temperature?', 0.0, 1.0, 0.1)
|
202 |
|
203 |
if st.button("Process"):
|
204 |
with st.spinner("Processing"):
|
|
|
213 |
|
214 |
# create conversation chain
|
215 |
st.session_state.conversation = get_conversation_chain(
|
216 |
+
vectorstore,selected_llm,selected_temperature)
|
217 |
|
218 |
if st.button("Load"):
|
219 |
with st.spinner("Processing"):
|
|
|
223 |
|
224 |
# create conversation chain
|
225 |
st.session_state.conversation = get_conversation_chain(
|
226 |
+
vectorstore,selected_llm,selected_temperature)
|
227 |
|
228 |
if st.session_state.conversation:
|
229 |
st.header("VerAi :books:")
|
|
|
235 |
|
236 |
if __name__ == '__main__':
|
237 |
main()
|
|