Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
6 |
+
from langchain_openai import OpenAIEmbeddings,ChatOpenAI
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
from htmlTemplates import css, bot_template, user_template
|
11 |
+
from langchain_community.llms import HuggingFaceHub
|
12 |
+
|
13 |
+
#Llama2
|
14 |
+
import torch
|
15 |
+
import transformers
|
16 |
+
from langchain_community.llms import HuggingFacePipeline
|
17 |
+
from transformers import AutoTokenizer
|
18 |
+
from torch import cuda, bfloat16
|
19 |
+
import langchain
|
20 |
+
langchain.verbose = False
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def get_pdf_text(pdf_docs):
|
25 |
+
text = ""
|
26 |
+
for pdf in pdf_docs:
|
27 |
+
pdf_reader = PdfReader(pdf)
|
28 |
+
for page in pdf_reader.pages:
|
29 |
+
text += page.extract_text()
|
30 |
+
return text
|
31 |
+
|
32 |
+
def get_text_chunks(text):
|
33 |
+
text_splitter = CharacterTextSplitter(
|
34 |
+
separator="\n",
|
35 |
+
chunk_size=1000, # the character length of the chunck
|
36 |
+
chunk_overlap=200, # the character length of the overlap between chuncks
|
37 |
+
length_function=len # the length function - in this case, character length (aka the python len() fn.)
|
38 |
+
)
|
39 |
+
chunks = text_splitter.split_text(text)
|
40 |
+
return chunks
|
41 |
+
|
42 |
+
def get_vectorstore(text_chunks,selected_embedding):
|
43 |
+
if selected_embedding == 'OpenAI':
|
44 |
+
print('OpenAI embedding')
|
45 |
+
embeddings = OpenAIEmbeddings()
|
46 |
+
elif selected_embedding == 'Instructor-xl':
|
47 |
+
print('Instructor-xl embedding')
|
48 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
49 |
+
|
50 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
51 |
+
vectorstore.save_local("faiss_index")
|
52 |
+
return vectorstore
|
53 |
+
|
54 |
+
def load_vectorstore(text_chunks,selected_embedding):
|
55 |
+
if selected_embedding == 'OpenAI':
|
56 |
+
print('OpenAI embedding')
|
57 |
+
embeddings = OpenAIEmbeddings()
|
58 |
+
elif selected_embedding == 'Instructor-xl':
|
59 |
+
print('Instructor-xl embedding')
|
60 |
+
|
61 |
+
vectorstore = FAISS.load_local("faiss_index", embeddings)
|
62 |
+
return vectorstore
|
63 |
+
|
64 |
+
def get_conversation_chain(vectorstore,selected_llm):
|
65 |
+
if selected_llm == 'OpenAI':
|
66 |
+
print('OpenAi LLM')
|
67 |
+
llm = ChatOpenAI()
|
68 |
+
|
69 |
+
|
70 |
+
elif selected_llm == 'Llama2':
|
71 |
+
print('Llama2 LLM')
|
72 |
+
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
73 |
+
hf_auth = hf_auth
|
74 |
+
|
75 |
+
model_config = transformers.AutoConfig.from_pretrained(
|
76 |
+
model_id,
|
77 |
+
token=hf_auth
|
78 |
+
)
|
79 |
+
|
80 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
81 |
+
|
82 |
+
if('cuda' in device):
|
83 |
+
# set quantization configuration to load large model with less GPU memory
|
84 |
+
# this requires the `bitsandbytes` library
|
85 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
86 |
+
load_in_4bit=True,
|
87 |
+
bnb_4bit_quant_type='nf4',
|
88 |
+
bnb_4bit_use_double_quant=True,
|
89 |
+
bnb_4bit_compute_dtype=bfloat16
|
90 |
+
)
|
91 |
+
|
92 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
93 |
+
model_id,
|
94 |
+
trust_remote_code=True,
|
95 |
+
config=model_config,
|
96 |
+
quantization_config=bnb_config,
|
97 |
+
device_map='auto',
|
98 |
+
token=hf_auth
|
99 |
+
)
|
100 |
+
else:
|
101 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
102 |
+
model_id,
|
103 |
+
trust_remote_code=True,
|
104 |
+
config=model_config,
|
105 |
+
device_map='auto',
|
106 |
+
token=hf_auth
|
107 |
+
)
|
108 |
+
|
109 |
+
# enable evaluation mode to allow model inference
|
110 |
+
model.eval()
|
111 |
+
print(f"Model loaded on {device}")
|
112 |
+
|
113 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
114 |
+
model_id,
|
115 |
+
token=hf_auth
|
116 |
+
)
|
117 |
+
|
118 |
+
pipeline = transformers.pipeline(
|
119 |
+
torch_dtype=torch.float32,
|
120 |
+
model=model,
|
121 |
+
tokenizer=tokenizer,
|
122 |
+
return_full_text=True, # langchain expects the full text
|
123 |
+
task='text-generation',
|
124 |
+
temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
125 |
+
max_new_tokens=512, # max number of tokens to generate in the output
|
126 |
+
repetition_penalty=1.1 # without this output begins repeating
|
127 |
+
)
|
128 |
+
|
129 |
+
llm = HuggingFacePipeline(pipeline=pipeline)
|
130 |
+
|
131 |
+
# Generic LLM
|
132 |
+
memory = ConversationBufferMemory(
|
133 |
+
memory_key='chat_history', return_messages=True)
|
134 |
+
|
135 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
136 |
+
llm=llm,
|
137 |
+
retriever=vectorstore.as_retriever(),
|
138 |
+
memory=memory,
|
139 |
+
return_source_documents=False
|
140 |
+
)
|
141 |
+
#print(conversation_chain)
|
142 |
+
|
143 |
+
return conversation_chain
|
144 |
+
|
145 |
+
|
146 |
+
def handle_userinput(user_question):
|
147 |
+
|
148 |
+
print('Question: ' + user_question)
|
149 |
+
response = st.session_state.conversation({'question': user_question})
|
150 |
+
st.session_state.chat_history = response['chat_history']
|
151 |
+
|
152 |
+
|
153 |
+
for i, message in enumerate(st.session_state.chat_history):
|
154 |
+
if i % 2 == 0:
|
155 |
+
st.write(user_template.replace(
|
156 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
157 |
+
else:
|
158 |
+
st.write(bot_template.replace(
|
159 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
160 |
+
|
161 |
+
|
162 |
+
def main():
|
163 |
+
load_dotenv()
|
164 |
+
st.set_page_config(page_title="VerAi",
|
165 |
+
page_icon=":books:")
|
166 |
+
st.write(css, unsafe_allow_html=True)
|
167 |
+
|
168 |
+
if "conversation" not in st.session_state:
|
169 |
+
st.session_state.conversation = None
|
170 |
+
if "chat_history" not in st.session_state:
|
171 |
+
st.session_state.chat_history = None
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
with st.sidebar:
|
176 |
+
st.subheader("Your documents")
|
177 |
+
pdf_docs = st.file_uploader(
|
178 |
+
"Upload your new PDFs here and click on 'Process' or load the last upload by clicking on 'Load'", accept_multiple_files=True)
|
179 |
+
|
180 |
+
selected_embedding = st.radio("Which Embedding?",["OpenAI", "Instructor-xl"])
|
181 |
+
selected_llm = st.radio("Which LLM?",["OpenAI", "Llama2"])
|
182 |
+
|
183 |
+
if st.button("Process"):
|
184 |
+
with st.spinner("Processing"):
|
185 |
+
# get pdf text
|
186 |
+
raw_text = get_pdf_text(pdf_docs)
|
187 |
+
|
188 |
+
# get the text chunks
|
189 |
+
text_chunks = get_text_chunks(raw_text)
|
190 |
+
|
191 |
+
# create vector store
|
192 |
+
vectorstore = get_vectorstore(text_chunks,selected_embedding)
|
193 |
+
|
194 |
+
# create conversation chain
|
195 |
+
st.session_state.conversation = get_conversation_chain(
|
196 |
+
vectorstore,selected_llm)
|
197 |
+
|
198 |
+
if st.button("Load"):
|
199 |
+
with st.spinner("Processing"):
|
200 |
+
|
201 |
+
# load vector store
|
202 |
+
vectorstore = load_vectorstore(selected_embedding,selected_embedding)
|
203 |
+
|
204 |
+
# create conversation chain
|
205 |
+
st.session_state.conversation = get_conversation_chain(
|
206 |
+
vectorstore,selected_llm)
|
207 |
+
|
208 |
+
if st.session_state.conversation:
|
209 |
+
st.header("VerAi :books:")
|
210 |
+
user_question = st.text_input("Stel een vraag hieronder")
|
211 |
+
# Vertel me iets over Wettelijke uren
|
212 |
+
# wat zijn Overige verloftypes bij kpn
|
213 |
+
if st.session_state.conversation and user_question:
|
214 |
+
handle_userinput(user_question)
|
215 |
+
|
216 |
+
if __name__ == '__main__':
|
217 |
+
main()
|