Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,8 @@ from langchain_community.vectorstores import FAISS
|
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
from htmlTemplates import css, bot_template, user_template
|
13 |
-
from langchain_community.llms import HuggingFaceHub
|
|
|
14 |
|
15 |
#Llama2
|
16 |
import torch
|
@@ -33,8 +34,8 @@ def get_pdf_text(pdf_docs):
|
|
33 |
def get_text_chunks(text):
|
34 |
text_splitter = CharacterTextSplitter(
|
35 |
separator="\n",
|
36 |
-
chunk_size=
|
37 |
-
chunk_overlap=
|
38 |
length_function=len # the length function - in this case, character length (aka the python len() fn.)
|
39 |
)
|
40 |
chunks = text_splitter.split_text(text)
|
@@ -76,14 +77,14 @@ def load_vectorstore(text_chunks,selected_embedding):
|
|
76 |
return vectorstore
|
77 |
|
78 |
def get_conversation_chain(vectorstore,selected_llm,selected_temperature):
|
79 |
-
print('
|
80 |
print('Selected Temperature: ' + str(selected_temperature))
|
81 |
|
82 |
if selected_llm == 'GPT 3.5':
|
83 |
#openai_model = "gpt-4-turbo-preview"
|
84 |
openai_model = "gpt-3.5-turbo"
|
85 |
llm = ChatOpenAI(model=openai_model,temperature=selected_temperature)
|
86 |
-
elif selected_llm == 'Llama2':
|
87 |
|
88 |
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
89 |
hf_auth = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
@@ -144,18 +145,25 @@ def get_conversation_chain(vectorstore,selected_llm,selected_temperature):
|
|
144 |
|
145 |
llm = HuggingFacePipeline(pipeline=pipeline)
|
146 |
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
# Generic LLM
|
150 |
memory = ConversationBufferMemory(
|
151 |
-
|
152 |
|
153 |
|
154 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
155 |
llm=llm,
|
156 |
retriever=vectorstore.as_retriever(),
|
157 |
memory=memory,
|
158 |
-
return_source_documents=
|
|
|
159 |
)
|
160 |
#print(conversation_chain)
|
161 |
|
@@ -164,10 +172,17 @@ def get_conversation_chain(vectorstore,selected_llm,selected_temperature):
|
|
164 |
|
165 |
def handle_userinput(user_question):
|
166 |
|
167 |
-
print('Question: ' + user_question)
|
168 |
response = st.session_state.conversation({'question': user_question})
|
169 |
-
st.session_state.chat_history = response['chat_history']
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
for i, message in enumerate(st.session_state.chat_history):
|
173 |
if i % 2 == 0:
|
@@ -197,7 +212,7 @@ def main():
|
|
197 |
"Upload your new PDFs here and click on 'Process' or load the last upload by clicking on 'Load'", accept_multiple_files=True)
|
198 |
|
199 |
selected_embedding = st.radio("Which Embedding?",["Cohere-multilingual-v3.0","OpenAI", "Instructor-xl"])
|
200 |
-
selected_llm = st.radio("Which LLM?",["GPT 3.5", "Llama2"])
|
201 |
selected_temperature = st.slider('Temperature?', 0.0, 1.0, 0.1)
|
202 |
|
203 |
if st.button("Process"):
|
|
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
from htmlTemplates import css, bot_template, user_template
|
13 |
+
from langchain_community.llms import HuggingFaceHub,HuggingFaceTextGenInference
|
14 |
+
|
15 |
|
16 |
#Llama2
|
17 |
import torch
|
|
|
34 |
def get_text_chunks(text):
|
35 |
text_splitter = CharacterTextSplitter(
|
36 |
separator="\n",
|
37 |
+
chunk_size=500, # the character length of the chunck
|
38 |
+
chunk_overlap=100, # the character length of the overlap between chuncks
|
39 |
length_function=len # the length function - in this case, character length (aka the python len() fn.)
|
40 |
)
|
41 |
chunks = text_splitter.split_text(text)
|
|
|
77 |
return vectorstore
|
78 |
|
79 |
def get_conversation_chain(vectorstore,selected_llm,selected_temperature):
|
80 |
+
print('Selected LLM: ' + selected_llm)
|
81 |
print('Selected Temperature: ' + str(selected_temperature))
|
82 |
|
83 |
if selected_llm == 'GPT 3.5':
|
84 |
#openai_model = "gpt-4-turbo-preview"
|
85 |
openai_model = "gpt-3.5-turbo"
|
86 |
llm = ChatOpenAI(model=openai_model,temperature=selected_temperature)
|
87 |
+
elif selected_llm == 'Llama2 local':
|
88 |
|
89 |
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
90 |
hf_auth = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
|
|
145 |
|
146 |
llm = HuggingFacePipeline(pipeline=pipeline)
|
147 |
|
148 |
+
elif selected_llm == 'Llama2 inference':
|
149 |
+
llm = HuggingFaceTextGenInference(
|
150 |
+
inference_server_url=os.environ.get("INFERENCE_URL"),
|
151 |
+
max_new_tokens=50,
|
152 |
+
timeout=1200,
|
153 |
+
temperature=selected_temperature
|
154 |
+
)
|
155 |
|
156 |
# Generic LLM
|
157 |
memory = ConversationBufferMemory(
|
158 |
+
memory_key='chat_history', return_messages=True, output_key='answer')
|
159 |
|
160 |
|
161 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
162 |
llm=llm,
|
163 |
retriever=vectorstore.as_retriever(),
|
164 |
memory=memory,
|
165 |
+
return_source_documents=True,
|
166 |
+
verbose=True,
|
167 |
)
|
168 |
#print(conversation_chain)
|
169 |
|
|
|
172 |
|
173 |
def handle_userinput(user_question):
|
174 |
|
175 |
+
#print('Question: ' + user_question)
|
176 |
response = st.session_state.conversation({'question': user_question})
|
|
|
177 |
|
178 |
+
anser = response.get("answer")
|
179 |
+
sources = response.get("source_documents", [])
|
180 |
+
#print('Answer: ' + anser)
|
181 |
+
#print('Sources: ' + str(sources))
|
182 |
+
with st.expander("Sources"):
|
183 |
+
st.write(str(sources))
|
184 |
+
|
185 |
+
st.session_state.chat_history = response['chat_history']
|
186 |
|
187 |
for i, message in enumerate(st.session_state.chat_history):
|
188 |
if i % 2 == 0:
|
|
|
212 |
"Upload your new PDFs here and click on 'Process' or load the last upload by clicking on 'Load'", accept_multiple_files=True)
|
213 |
|
214 |
selected_embedding = st.radio("Which Embedding?",["Cohere-multilingual-v3.0","OpenAI", "Instructor-xl"])
|
215 |
+
selected_llm = st.radio("Which LLM?",["GPT 3.5", "Llama2 local" ,"Llama2 inference"])
|
216 |
selected_temperature = st.slider('Temperature?', 0.0, 1.0, 0.1)
|
217 |
|
218 |
if st.button("Process"):
|