# # Copyright (c) 2023-2024, Qi Zuo # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # https://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # import os # from PIL import Image # import numpy as np # import gradio as gr # import base64 # import spaces # import subprocess # import os # # def install_cuda_toolkit(): # # # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" # # # # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" # # # CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) # # # subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) # # # subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) # # # subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) # # os.environ["CUDA_HOME"] = "/usr/local/cuda" # # os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) # # os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( # # os.environ["CUDA_HOME"], # # "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], # # ) # # # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range # # os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" # # install_cuda_toolkit() # def launch_pretrained(): # from huggingface_hub import snapshot_download, hf_hub_download # hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='assets.tar', local_dir="./") # os.system("tar -xvf assets.tar && rm assets.tar") # hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM-0.5B.tar', local_dir="./") # os.system("tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar") # hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM_prior_model.tar', local_dir="./") # os.system("tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar") # def launch_env_not_compile_with_cuda(): # os.system("pip install chumpy") # os.system("pip uninstall -y basicsr") # os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/") # # os.system("pip install -e ./third_party/sam2") # os.system("pip install numpy==1.23.0") # # os.system("pip install git+https://github.com/hitsz-zuoqi/sam2/") # # os.system("pip install git+https://github.com/ashawkey/diff-gaussian-rasterization/") # # os.system("pip install git+https://github.com/camenduru/simple-knn/") # os.system("pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html") # # def launch_env_compile_with_cuda(): # # # simple_knn # # os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/simple_knn.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/simple_knn-0.0.0.dist-info.zip") # # os.system("unzip simple_knn.zip && unzip simple_knn-0.0.0.dist-info.zip") # # os.system("mv simple_knn /usr/local/lib/python3.10/site-packages/") # # os.system("mv simple_knn-0.0.0.dist-info /usr/local/lib/python3.10/site-packages/") # # # diff_gaussian # # os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/diff_gaussian_rasterization.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/diff_gaussian_rasterization-0.0.0.dist-info.zip") # # os.system("unzip diff_gaussian_rasterization.zip && unzip diff_gaussian_rasterization-0.0.0.dist-info.zip") # # os.system("mv diff_gaussian_rasterization /usr/local/lib/python3.10/site-packages/") # # os.system("mv diff_gaussian_rasterization-0.0.0.dist-info /usr/local/lib/python3.10/site-packages/") # # # pytorch3d # # os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/pytorch3d.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/pytorch3d-0.7.8.dist-info.zip") # # os.system("unzip pytorch3d.zip && unzip pytorch3d-0.7.8.dist-info.zip") # # os.system("mv pytorch3d /usr/local/lib/python3.10/site-packages/") # # os.system("mv pytorch3d-0.7.8.dist-info /usr/local/lib/python3.10/site-packages/") # # launch_env_compile_with_cuda() # def assert_input_image(input_image): # if input_image is None: # raise gr.Error("No image selected or uploaded!") # def prepare_working_dir(): # import tempfile # working_dir = tempfile.TemporaryDirectory() # return working_dir # def init_preprocessor(): # from LHM.utils.preprocess import Preprocessor # global preprocessor # preprocessor = Preprocessor() # def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir): # image_raw = os.path.join(working_dir.name, "raw.png") # with Image.fromarray(image_in) as img: # img.save(image_raw) # image_out = os.path.join(working_dir.name, "rembg.png") # success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter) # assert success, f"Failed under preprocess_fn!" # return image_out # def get_image_base64(path): # with open(path, "rb") as image_file: # encoded_string = base64.b64encode(image_file.read()).decode() # return f"data:image/png;base64,{encoded_string}" # def demo_lhm(infer_impl): # def core_fn(image: str, video_params, working_dir): # image_raw = os.path.join(working_dir.name, "raw.png") # with Image.fromarray(image) as img: # img.save(image_raw) # base_vid = os.path.basename(video_params).split("_")[0] # smplx_params_dir = os.path.join("./assets/sample_motion", base_vid, "smplx_params") # dump_video_path = os.path.join(working_dir.name, "output.mp4") # dump_image_path = os.path.join(working_dir.name, "output.png") # status = spaces.GPU(infer_impl( # gradio_demo_image=image_raw, # gradio_motion_file=smplx_params_dir, # gradio_masked_image=dump_image_path, # gradio_video_save_path=dump_video_path # )) # if status: # return dump_image_path, dump_video_path # else: # return None, None # _TITLE = '''LHM: Large Animatable Human Model''' # _DESCRIPTION = ''' # Reconstruct a human avatar in 0.2 seconds with A100! # ''' # with gr.Blocks(analytics_enabled=False) as demo: # # # logo_url = "./assets/rgba_logo_new.png" # logo_base64 = get_image_base64(logo_url) # gr.HTML( # f""" #
#
#

Large Animatable Human Model

#
#
# """ # ) # gr.HTML( # """

Notes: Please input full-body image in case of detection errors.

""" # ) # # DISPLAY # with gr.Row(): # with gr.Column(variant='panel', scale=1): # with gr.Tabs(elem_id="openlrm_input_image"): # with gr.TabItem('Input Image'): # with gr.Row(): # input_image = gr.Image(label="Input Image", image_mode="RGBA", height=480, width=270, sources="upload", type="numpy", elem_id="content_image") # # EXAMPLES # with gr.Row(): # examples = [ # ['assets/sample_input/joker.jpg'], # ['assets/sample_input/anime.png'], # ['assets/sample_input/basket.png'], # ['assets/sample_input/ai_woman1.JPG'], # ['assets/sample_input/anime2.JPG'], # ['assets/sample_input/anime3.JPG'], # ['assets/sample_input/boy1.png'], # ['assets/sample_input/choplin.jpg'], # ['assets/sample_input/eins.JPG'], # ['assets/sample_input/girl1.png'], # ['assets/sample_input/girl2.png'], # ['assets/sample_input/robot.jpg'], # ] # gr.Examples( # examples=examples, # inputs=[input_image], # examples_per_page=20, # ) # with gr.Column(): # with gr.Tabs(elem_id="openlrm_input_video"): # with gr.TabItem('Input Video'): # with gr.Row(): # video_input = gr.Video(label="Input Video",height=480, width=270, interactive=False) # examples = [ # # './assets/sample_motion/danaotiangong/danaotiangong_origin.mp4', # './assets/sample_motion/ex5/ex5_origin.mp4', # './assets/sample_motion/girl2/girl2_origin.mp4', # './assets/sample_motion/jntm/jntm_origin.mp4', # './assets/sample_motion/mimo1/mimo1_origin.mp4', # './assets/sample_motion/mimo2/mimo2_origin.mp4', # './assets/sample_motion/mimo4/mimo4_origin.mp4', # './assets/sample_motion/mimo5/mimo5_origin.mp4', # './assets/sample_motion/mimo6/mimo6_origin.mp4', # './assets/sample_motion/nezha/nezha_origin.mp4', # './assets/sample_motion/taiji/taiji_origin.mp4' # ] # gr.Examples( # examples=examples, # inputs=[video_input], # examples_per_page=20, # ) # with gr.Column(variant='panel', scale=1): # with gr.Tabs(elem_id="openlrm_processed_image"): # with gr.TabItem('Processed Image'): # with gr.Row(): # processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", height=480, width=270, interactive=False) # with gr.Column(variant='panel', scale=1): # with gr.Tabs(elem_id="openlrm_render_video"): # with gr.TabItem('Rendered Video'): # with gr.Row(): # output_video = gr.Video(label="Rendered Video", format="mp4", height=480, width=270, autoplay=True) # # SETTING # with gr.Row(): # with gr.Column(variant='panel', scale=1): # submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary') # working_dir = gr.State() # submit.click( # fn=assert_input_image, # inputs=[input_image], # queue=False, # ).success( # fn=prepare_working_dir, # outputs=[working_dir], # queue=False, # ).success( # fn=core_fn, # inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir # outputs=[processed_image, output_video], # ) # demo.queue() # demo.launch() # def launch_gradio_app(): # os.environ.update({ # "APP_ENABLED": "1", # "APP_MODEL_NAME": "./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/", # "APP_INFER": "./configs/inference/human-lrm-500M.yaml", # "APP_TYPE": "infer.human_lrm", # "NUMBA_THREADING_LAYER": 'omp', # }) # from LHM.runners import REGISTRY_RUNNERS # RunnerClass = REGISTRY_RUNNERS[os.getenv("APP_TYPE")] # with RunnerClass() as runner: # demo_lhm(infer_impl=runner.infer) # if __name__ == '__main__': # # launch_pretrained() # # launch_env_not_compile_with_cuda() # launch_gradio_app() import gradio as gr def greet(name): return "Hello " + name + "!!" demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch()