Spaces:
Runtime error
Runtime error
| """ | |
| 2025.3.17 | |
| 2025.3.19 | |
| 4.50.3 | |
| 0.15.2 | |
| __UNSLOTH_VERSIONING__ | |
| """ | |
| from torch import Tensor | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from trl.trainer.ppo_trainer import (Accelerator, BaseImageProcessor, CallbackHandler, DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK, DataCollatorWithPadding, DataLoader, Dataset, ExportableState, FeatureExtractionMixin, GenerationConfig, INVALID_LOGPROB, OnlineTrainerState, Optional, PPOConfig, PPOTrainer, PeftConfig, PeftModel, PolicyAndValueWrapper, PreTrainedTokenizerBase, PrinterCallback, ProcessorMixin, Trainer, TrainerCallback, TrainerControl, Union, batch_generation, broadcast, contextmanager, create_reference_model, defaultdict, disable_dropout_in_model, exact_div, first_true_indices, forward, gather_object, gc, generate_model_card, get_comet_experiment_url, get_peft_model, get_reporting_integration_callbacks, get_reward, is_peft_available, is_wandb_available, log_table_to_comet_experiment, masked_mean, masked_whiten, math, nn, np, nullcontext, os, pd, peft_module_casting_to_bf16, prepare_deepspeed, print_rich_table, textwrap, time, torch, truncate_response, unwrap_model_for_generation, wandb) | |
| import os | |
| from typing import * | |
| from dataclasses import dataclass, field | |
| from packaging.version import Version | |
| import torch | |
| import numpy as np | |
| from contextlib import nullcontext | |
| from torch.nn import functional as F | |
| from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
| torch_compile_options = { | |
| "epilogue_fusion" : True, | |
| "max_autotune" : False, | |
| "shape_padding" : True, | |
| "trace.enabled" : False, | |
| "triton.cudagraphs" : False, | |
| } | |
| def selective_log_softmax(logits, index): | |
| logits = logits.to(torch.float32) | |
| selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
| # loop to reduce peak mem consumption | |
| # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
| logsumexp_values = torch.logsumexp(logits, dim = -1) | |
| per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
| return per_token_logps | |
| class UnslothPPOConfig(PPOConfig): | |
| """ | |
| Configuration class for the [`PPOTrainer`]. | |
| Using [`~transformers.HfArgumentParser`] we can turn this class into | |
| [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
| command line. | |
| Parameters: | |
| exp_name (`str`, *optional*, defaults to `os.path.basename(__file__)[:-3]`): | |
| Name of this experiment. | |
| reward_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`): | |
| Path to the reward model. | |
| model_adapter_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the train target PEFT adapter, when using LoRA with multiple adapters. | |
| ref_adapter_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the reference PEFT adapter, when using LoRA with multiple adapters. | |
| num_ppo_epochs (`int`, *optional*, defaults to `4`): | |
| Number of epochs to train. | |
| whiten_rewards (`bool`, *optional*, defaults to `False`): | |
| Whether to whiten the rewards. | |
| kl_coef (`float`, *optional*, defaults to `0.05`): | |
| KL coefficient. | |
| cliprange (`float`, *optional*, defaults to `0.2`): | |
| Clip range. | |
| vf_coef (`float`, *optional*, defaults to `0.1`): | |
| Value function coefficient. | |
| cliprange_value (`float`, *optional*, defaults to `0.2`): | |
| Clip range for the value function. | |
| gamma (`float`, *optional*, defaults to `1.0`): | |
| Discount factor. | |
| lam (`float`, *optional*, defaults to `0.95`): | |
| Lambda value for GAE. | |
| ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): | |
| This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, | |
| improving generation speed. However, disabling this option allows training models that exceed the VRAM | |
| capacity of a single GPU, albeit at the cost of slower generation. | |
| """ | |
| vllm_sampling_params: Optional[Any] = field( | |
| default = None, | |
| metadata = {'help': 'vLLM SamplingParams'}, | |
| ) | |
| unsloth_num_chunks : Optional[int] = field( | |
| default = -1, | |
| metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
| ) | |
| def __init__( | |
| self, | |
| output_dir = None, | |
| overwrite_output_dir = None, | |
| do_train = False, | |
| do_eval = False, | |
| do_predict = False, | |
| eval_strategy = 'no', | |
| prediction_loss_only = False, | |
| per_device_train_batch_size = 4, | |
| per_device_eval_batch_size = 4, | |
| per_gpu_train_batch_size = None, | |
| per_gpu_eval_batch_size = None, | |
| gradient_accumulation_steps = 2, | |
| eval_accumulation_steps = 2, | |
| eval_delay = 0, | |
| torch_empty_cache_steps = 250, | |
| learning_rate = 5e-05, | |
| weight_decay = 0.01, | |
| adam_beta1 = 0.9, | |
| adam_beta2 = 0.999, | |
| adam_epsilon = 1e-08, | |
| max_grad_norm = 1.0, | |
| num_train_epochs = 3.0, | |
| max_steps = -1, | |
| lr_scheduler_type = 'linear', | |
| warmup_ratio = 0.1, | |
| warmup_steps = 0, | |
| log_level = 'passive', | |
| log_level_replica = 'warning', | |
| log_on_each_node = True, | |
| logging_dir = None, | |
| logging_strategy = 'steps', | |
| logging_first_step = False, | |
| logging_steps = 1, | |
| logging_nan_inf_filter = False, | |
| save_strategy = 'steps', | |
| save_steps = 500, | |
| save_total_limit = None, | |
| save_safetensors = True, | |
| save_on_each_node = False, | |
| save_only_model = False, | |
| restore_callback_states_from_checkpoint = False, | |
| no_cuda = False, | |
| use_cpu = False, | |
| use_mps_device = False, | |
| seed = 3407, | |
| data_seed = 3407, | |
| jit_mode_eval = False, | |
| use_ipex = False, | |
| bf16 = False, | |
| fp16 = False, | |
| fp16_opt_level = 'O1', | |
| half_precision_backend = 'auto', | |
| bf16_full_eval = False, | |
| fp16_full_eval = False, | |
| tf32 = None, | |
| local_rank = -1, | |
| ddp_backend = None, | |
| tpu_num_cores = None, | |
| tpu_metrics_debug = False, | |
| debug = '', | |
| dataloader_drop_last = False, | |
| eval_steps = None, | |
| dataloader_num_workers = 0, | |
| dataloader_prefetch_factor = None, | |
| past_index = -1, | |
| run_name = None, | |
| disable_tqdm = None, | |
| remove_unused_columns = True, | |
| label_names = None, | |
| load_best_model_at_end = False, | |
| metric_for_best_model = None, | |
| greater_is_better = None, | |
| ignore_data_skip = False, | |
| fsdp = '', | |
| fsdp_min_num_params = 0, | |
| fsdp_config = None, | |
| tp_size = 0, | |
| fsdp_transformer_layer_cls_to_wrap = None, | |
| accelerator_config = None, | |
| deepspeed = None, | |
| label_smoothing_factor = 0.0, | |
| optim = 'adamw_8bit', | |
| optim_args = None, | |
| adafactor = False, | |
| group_by_length = False, | |
| length_column_name = 'length', | |
| report_to = None, | |
| ddp_find_unused_parameters = None, | |
| ddp_bucket_cap_mb = None, | |
| ddp_broadcast_buffers = None, | |
| dataloader_pin_memory = True, | |
| dataloader_persistent_workers = False, | |
| skip_memory_metrics = True, | |
| use_legacy_prediction_loop = False, | |
| push_to_hub = False, | |
| resume_from_checkpoint = None, | |
| hub_model_id = None, | |
| hub_strategy = 'every_save', | |
| hub_token = None, | |
| hub_private_repo = None, | |
| hub_always_push = False, | |
| gradient_checkpointing = False, | |
| gradient_checkpointing_kwargs = None, | |
| include_inputs_for_metrics = False, | |
| eval_do_concat_batches = True, | |
| fp16_backend = 'auto', | |
| evaluation_strategy = None, | |
| push_to_hub_model_id = None, | |
| push_to_hub_organization = None, | |
| push_to_hub_token = None, | |
| mp_parameters = '', | |
| auto_find_batch_size = False, | |
| full_determinism = False, | |
| torchdynamo = None, | |
| ray_scope = 'last', | |
| ddp_timeout = 1800, | |
| torch_compile = False, | |
| torch_compile_backend = None, | |
| torch_compile_mode = None, | |
| dispatch_batches = None, | |
| split_batches = None, | |
| include_tokens_per_second = False, | |
| include_num_input_tokens_seen = False, | |
| neftune_noise_alpha = None, | |
| optim_target_modules = None, | |
| batch_eval_metrics = False, | |
| eval_on_start = False, | |
| use_liger_kernel = False, | |
| eval_use_gather_object = False, | |
| average_tokens_across_devices = False, | |
| dataset_num_proc = None, | |
| num_mini_batches = 1, | |
| total_episodes = None, | |
| local_rollout_forward_batch_size = 64, | |
| num_sample_generations = 10, | |
| response_length = 53, | |
| stop_token = None, | |
| stop_token_id = None, | |
| temperature = 0.7, | |
| missing_eos_penalty = None, | |
| sft_model_path = 'EleutherAI/pythia-160m', | |
| world_size = None, | |
| num_total_batches = None, | |
| micro_batch_size = None, | |
| local_batch_size = None, | |
| batch_size = None, | |
| local_mini_batch_size = None, | |
| mini_batch_size = None, | |
| exp_name = 'ppo_config', | |
| reward_model_path = 'EleutherAI/pythia-160m', | |
| model_adapter_name = None, | |
| ref_adapter_name = None, | |
| num_ppo_epochs = 4, | |
| whiten_rewards = False, | |
| kl_coef = 0.05, | |
| cliprange = 0.2, | |
| vf_coef = 0.1, | |
| cliprange_value = 0.2, | |
| gamma = 1.0, | |
| lam = 0.95, | |
| ds3_gather_for_generation = True, | |
| vllm_sampling_params = None, | |
| unsloth_num_chunks = -1, | |
| **kwargs, | |
| ): | |
| if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
| if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
| if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
| output_dir = 'unsloth_training_checkpoints' | |
| save_strategy = 'no' | |
| if dataset_num_proc is None: | |
| from multiprocessing import cpu_count | |
| dataset_num_proc = cpu_count() | |
| super().__init__( | |
| output_dir = output_dir, | |
| overwrite_output_dir = overwrite_output_dir, | |
| do_train = do_train, | |
| do_eval = do_eval, | |
| do_predict = do_predict, | |
| eval_strategy = eval_strategy, | |
| prediction_loss_only = prediction_loss_only, | |
| per_device_train_batch_size = per_device_train_batch_size, | |
| per_device_eval_batch_size = per_device_eval_batch_size, | |
| per_gpu_train_batch_size = per_gpu_train_batch_size, | |
| per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
| gradient_accumulation_steps = gradient_accumulation_steps, | |
| eval_accumulation_steps = eval_accumulation_steps, | |
| eval_delay = eval_delay, | |
| torch_empty_cache_steps = torch_empty_cache_steps, | |
| learning_rate = learning_rate, | |
| weight_decay = weight_decay, | |
| adam_beta1 = adam_beta1, | |
| adam_beta2 = adam_beta2, | |
| adam_epsilon = adam_epsilon, | |
| max_grad_norm = max_grad_norm, | |
| num_train_epochs = num_train_epochs, | |
| max_steps = max_steps, | |
| lr_scheduler_type = lr_scheduler_type, | |
| warmup_ratio = warmup_ratio, | |
| warmup_steps = warmup_steps, | |
| log_level = log_level, | |
| log_level_replica = log_level_replica, | |
| log_on_each_node = log_on_each_node, | |
| logging_dir = logging_dir, | |
| logging_strategy = logging_strategy, | |
| logging_first_step = logging_first_step, | |
| logging_steps = logging_steps, | |
| logging_nan_inf_filter = logging_nan_inf_filter, | |
| save_strategy = save_strategy, | |
| save_steps = save_steps, | |
| save_total_limit = save_total_limit, | |
| save_safetensors = save_safetensors, | |
| save_on_each_node = save_on_each_node, | |
| save_only_model = save_only_model, | |
| restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
| no_cuda = no_cuda, | |
| use_cpu = use_cpu, | |
| use_mps_device = use_mps_device, | |
| seed = seed, | |
| data_seed = data_seed, | |
| jit_mode_eval = jit_mode_eval, | |
| use_ipex = use_ipex, | |
| bf16 = bf16, | |
| fp16 = fp16, | |
| fp16_opt_level = fp16_opt_level, | |
| half_precision_backend = half_precision_backend, | |
| bf16_full_eval = bf16_full_eval, | |
| fp16_full_eval = fp16_full_eval, | |
| tf32 = tf32, | |
| local_rank = local_rank, | |
| ddp_backend = ddp_backend, | |
| tpu_num_cores = tpu_num_cores, | |
| tpu_metrics_debug = tpu_metrics_debug, | |
| debug = debug, | |
| dataloader_drop_last = dataloader_drop_last, | |
| eval_steps = eval_steps, | |
| dataloader_num_workers = dataloader_num_workers, | |
| dataloader_prefetch_factor = dataloader_prefetch_factor, | |
| past_index = past_index, | |
| run_name = run_name, | |
| disable_tqdm = disable_tqdm, | |
| remove_unused_columns = remove_unused_columns, | |
| label_names = label_names, | |
| load_best_model_at_end = load_best_model_at_end, | |
| metric_for_best_model = metric_for_best_model, | |
| greater_is_better = greater_is_better, | |
| ignore_data_skip = ignore_data_skip, | |
| fsdp = fsdp, | |
| fsdp_min_num_params = fsdp_min_num_params, | |
| fsdp_config = fsdp_config, | |
| tp_size = tp_size, | |
| fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
| accelerator_config = accelerator_config, | |
| deepspeed = deepspeed, | |
| label_smoothing_factor = label_smoothing_factor, | |
| optim = optim, | |
| optim_args = optim_args, | |
| adafactor = adafactor, | |
| group_by_length = group_by_length, | |
| length_column_name = length_column_name, | |
| report_to = report_to, | |
| ddp_find_unused_parameters = ddp_find_unused_parameters, | |
| ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
| ddp_broadcast_buffers = ddp_broadcast_buffers, | |
| dataloader_pin_memory = dataloader_pin_memory, | |
| dataloader_persistent_workers = dataloader_persistent_workers, | |
| skip_memory_metrics = skip_memory_metrics, | |
| use_legacy_prediction_loop = use_legacy_prediction_loop, | |
| push_to_hub = push_to_hub, | |
| resume_from_checkpoint = resume_from_checkpoint, | |
| hub_model_id = hub_model_id, | |
| hub_strategy = hub_strategy, | |
| hub_token = hub_token, | |
| hub_private_repo = hub_private_repo, | |
| hub_always_push = hub_always_push, | |
| gradient_checkpointing = gradient_checkpointing, | |
| gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
| include_inputs_for_metrics = include_inputs_for_metrics, | |
| eval_do_concat_batches = eval_do_concat_batches, | |
| fp16_backend = fp16_backend, | |
| evaluation_strategy = evaluation_strategy, | |
| push_to_hub_model_id = push_to_hub_model_id, | |
| push_to_hub_organization = push_to_hub_organization, | |
| push_to_hub_token = push_to_hub_token, | |
| mp_parameters = mp_parameters, | |
| auto_find_batch_size = auto_find_batch_size, | |
| full_determinism = full_determinism, | |
| torchdynamo = torchdynamo, | |
| ray_scope = ray_scope, | |
| ddp_timeout = ddp_timeout, | |
| torch_compile = torch_compile, | |
| torch_compile_backend = torch_compile_backend, | |
| torch_compile_mode = torch_compile_mode, | |
| dispatch_batches = dispatch_batches, | |
| split_batches = split_batches, | |
| include_tokens_per_second = include_tokens_per_second, | |
| include_num_input_tokens_seen = include_num_input_tokens_seen, | |
| neftune_noise_alpha = neftune_noise_alpha, | |
| optim_target_modules = optim_target_modules, | |
| batch_eval_metrics = batch_eval_metrics, | |
| eval_on_start = eval_on_start, | |
| use_liger_kernel = use_liger_kernel, | |
| eval_use_gather_object = eval_use_gather_object, | |
| average_tokens_across_devices = average_tokens_across_devices, | |
| dataset_num_proc = dataset_num_proc, | |
| num_mini_batches = num_mini_batches, | |
| total_episodes = total_episodes, | |
| local_rollout_forward_batch_size = local_rollout_forward_batch_size, | |
| num_sample_generations = num_sample_generations, | |
| response_length = response_length, | |
| stop_token = stop_token, | |
| stop_token_id = stop_token_id, | |
| temperature = temperature, | |
| missing_eos_penalty = missing_eos_penalty, | |
| sft_model_path = sft_model_path, | |
| world_size = world_size, | |
| num_total_batches = num_total_batches, | |
| micro_batch_size = micro_batch_size, | |
| local_batch_size = local_batch_size, | |
| batch_size = batch_size, | |
| local_mini_batch_size = local_mini_batch_size, | |
| mini_batch_size = mini_batch_size, | |
| exp_name = exp_name, | |
| reward_model_path = reward_model_path, | |
| model_adapter_name = model_adapter_name, | |
| ref_adapter_name = ref_adapter_name, | |
| num_ppo_epochs = num_ppo_epochs, | |
| whiten_rewards = whiten_rewards, | |
| kl_coef = kl_coef, | |
| cliprange = cliprange, | |
| vf_coef = vf_coef, | |
| cliprange_value = cliprange_value, | |
| gamma = gamma, | |
| lam = lam, | |
| ds3_gather_for_generation = ds3_gather_for_generation,**kwargs) | |
| self.vllm_sampling_params = vllm_sampling_params | |
| self.unsloth_num_chunks = unsloth_num_chunks | |
| pass | |
| class _UnslothPPOTrainer(Trainer): | |
| _tag_names = ["trl", "ppo"] | |
| def __init__( | |
| self, | |
| args: PPOConfig, | |
| processing_class: Optional[ | |
| Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
| ], | |
| model: nn.Module, | |
| ref_model: Optional[nn.Module], | |
| reward_model: nn.Module, | |
| train_dataset: Dataset, | |
| value_model: Optional[nn.Module] = None, | |
| data_collator: Optional[DataCollatorWithPadding] = None, | |
| eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
| # less commonly used | |
| optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
| callbacks: Optional[list[TrainerCallback]] = None, | |
| peft_config: Optional["PeftConfig"] = None, | |
| ) -> None: | |
| if ref_model is model: | |
| raise ValueError( | |
| "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " | |
| "same as `model`, you must make a copy of it, or `None` if you use peft." | |
| ) | |
| self.args = args | |
| self.processing_class = processing_class | |
| self.policy_model = model | |
| # Define the collator if not provided | |
| if data_collator is None: | |
| data_collator = DataCollatorWithPadding(self.processing_class) | |
| # Handle stop token settings: update policy model's generation_config to use provided stop token | |
| if args.stop_token and args.stop_token_id: | |
| raise ValueError("You cannot set both `stop_token` and `stop_token_id`.") | |
| elif args.stop_token: | |
| if args.stop_token == "eos": | |
| self.policy_model.generation_config.eos_token_id = self.stop_token_id = processing_class.eos_token_id | |
| else: | |
| raise ValueError( | |
| f"Unknown `stop_token` {args.stop_token}. Allowed values are: `'eos'` and `None` (no stop token)." | |
| ) | |
| else: | |
| self.policy_model.generation_config.eos_token_id = self.stop_token_id = args.stop_token_id # None or int | |
| # peft support | |
| if not is_peft_available() and peft_config is not None: | |
| raise ImportError( | |
| "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" | |
| ) | |
| elif is_peft_available() and peft_config is not None: | |
| # if model is a peft model and we have a peft_confg, we merge and unload it first | |
| if isinstance(self.policy_model, PeftModel): | |
| self.policy_model = self.policy_model.merge_and_unload() | |
| # get peft model with the given config | |
| self.policy_model = get_peft_model(self.policy_model, peft_config) | |
| if args.bf16 and getattr(self.policy_model, "is_loaded_in_4bit", False): | |
| peft_module_casting_to_bf16(self.policy_model) | |
| self.is_peft_model = is_peft_available() and isinstance(self.policy_model, PeftModel) | |
| self.model_adapter_name = args.model_adapter_name | |
| self.ref_adapter_name = args.ref_adapter_name | |
| if ref_model: | |
| self.ref_model = ref_model | |
| elif self.is_peft_model: | |
| self.ref_model = None | |
| else: | |
| self.ref_model = create_reference_model(self.policy_model) | |
| self.reward_model = reward_model | |
| self.train_dataset = train_dataset | |
| self.train_dataset_len = len(train_dataset) | |
| self.value_model = value_model | |
| self.data_collator = data_collator | |
| self.eval_dataset = eval_dataset | |
| self.optimizer, self.lr_scheduler = optimizers | |
| self.optimizer_cls_and_kwargs = None # needed for transformers >= 4.47 | |
| ######### | |
| # calculate various batch sizes | |
| ######### | |
| if args.total_episodes is None: # allow the users to define episodes in terms of epochs. | |
| args.total_episodes = int(args.num_train_epochs * self.train_dataset_len) | |
| accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps) | |
| self.accelerator = accelerator | |
| args.world_size = accelerator.num_processes | |
| args.local_batch_size = ( | |
| args.per_device_train_batch_size * args.gradient_accumulation_steps * args.num_mini_batches | |
| ) | |
| args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size) | |
| args.batch_size = int(args.local_batch_size * args.world_size) | |
| args.mini_batch_size = exact_div( | |
| args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`" | |
| ) | |
| args.local_mini_batch_size = exact_div( | |
| args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`" | |
| ) | |
| if args.whiten_rewards: | |
| assert ( | |
| args.local_mini_batch_size >= 8 | |
| ), f"Per-rank minibatch size {args.local_mini_batch_size} is insufficient for whitening" | |
| # `per_rank_rollout_batch_size` is our `args.local_batch_size` | |
| # `per_rank_minibatch_size` is our `args.local_mini_batch_size` | |
| args.num_total_batches = math.ceil( | |
| args.total_episodes / args.batch_size | |
| ) # we may train for more than `total_episodes` | |
| time_tensor = torch.tensor(int(time.time()), device=accelerator.device) | |
| time_int = broadcast(time_tensor, 0).item() # avoid different timestamps across processes | |
| args.run_name = f"{args.exp_name}__{args.seed}__{time_int}" | |
| self.local_seed = args.seed + accelerator.process_index * 100003 # Prime | |
| if args.num_sample_generations > 0: | |
| self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations) | |
| self.local_dataloader_batch_size = args.local_batch_size | |
| ######### | |
| # setup model, optimizer, and others | |
| ######### | |
| for module in [self.policy_model, self.ref_model, self.value_model, self.reward_model]: | |
| if module is not None: | |
| disable_dropout_in_model(module) | |
| self.model = PolicyAndValueWrapper(self.policy_model, self.value_model) | |
| self.model.config = self.policy_model.config # needed for pushing to hub | |
| self.create_optimizer_and_scheduler( | |
| num_training_steps=args.num_total_batches | |
| ) # note that we are calling `self.lr_scheduler.step()` manually only at the batch level | |
| ######### | |
| ### trainer specifics | |
| ######### | |
| default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) | |
| self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks | |
| self.callback_handler = CallbackHandler( | |
| self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler | |
| ) | |
| self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) | |
| self.control = TrainerControl() | |
| self.state = OnlineTrainerState( | |
| is_local_process_zero=self.is_local_process_zero(), | |
| is_world_process_zero=self.is_world_process_zero(), | |
| stateful_callbacks=[ | |
| cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState) | |
| ], | |
| ) | |
| self.current_flos = 0 | |
| self.hp_search_backend = None | |
| self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None | |
| self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None | |
| # Create distant repo and output directory if needed | |
| self.hub_model_id = None | |
| if self.args.push_to_hub: | |
| self.init_hf_repo() | |
| if self.args.should_save: | |
| os.makedirs(self.args.output_dir, exist_ok=True) | |
| # Add tags for models that have been loaded with the correct transformers version | |
| if hasattr(self.model, "add_model_tags"): | |
| self.model.add_model_tags(self._tag_names) | |
| ######### | |
| ### setup dataloader | |
| ######### | |
| self.dataloader = DataLoader( | |
| self.train_dataset, | |
| batch_size=self.local_dataloader_batch_size, | |
| shuffle=True, | |
| collate_fn=self.data_collator, | |
| drop_last=True, # needed; otherwise the last batch will be of ragged shape | |
| ) | |
| # sync random states for DataLoader(shuffle=True) before `accelerator.prepare` | |
| # see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c | |
| torch.manual_seed(args.seed) | |
| self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader) | |
| torch.manual_seed(self.local_seed) # reset the local seed again | |
| self.eval_dataloader = DataLoader( | |
| self.eval_dataset, | |
| batch_size=args.per_device_eval_batch_size, | |
| collate_fn=self.data_collator, | |
| drop_last=True, | |
| ) # no need to shuffle eval dataset | |
| self.eval_dataloader = accelerator.prepare(self.eval_dataloader) | |
| if self.is_deepspeed_enabled: | |
| self.reward_model = prepare_deepspeed( | |
| self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16 | |
| ) | |
| if self.ref_model is None: | |
| if not self.is_peft_model: | |
| raise ValueError("No reference model and model is not a Peft model.") | |
| else: | |
| self.ref_model = prepare_deepspeed( | |
| self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16 | |
| ) | |
| else: | |
| if self.ref_model is None: | |
| if not self.is_peft_model: | |
| raise ValueError("No reference model and model is not a Peft model.") | |
| else: | |
| self.ref_model = self.ref_model.to(self.accelerator.device) | |
| self.reward_model = self.reward_model.to(self.accelerator.device) | |
| def get_train_dataloader(self) -> DataLoader: | |
| return self.dataloader | |
| def get_eval_dataloader(self) -> DataLoader: | |
| return self.eval_dataloader | |
| def null_ref_context(self): | |
| """Context manager for handling null reference model (that is, peft adapter manipulation).""" | |
| with ( | |
| self.accelerator.unwrap_model(self.model.policy).disable_adapter() | |
| if self.is_peft_model and not self.ref_adapter_name | |
| else nullcontext() | |
| ): | |
| if self.ref_adapter_name: | |
| self.model.policy.set_adapter(self.ref_adapter_name) | |
| yield | |
| if self.ref_adapter_name: | |
| self.model.policy.set_adapter(self.model_adapter_name or "default") | |
| def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False): | |
| backup_model = self.model | |
| self.model = self.model.policy # save only the policy | |
| if self.is_deepspeed_enabled: | |
| backup_deepspeed = self.deepspeed | |
| self.deepspeed = self.model | |
| super().save_model(output_dir, _internal_call) | |
| self.model = backup_model | |
| if self.is_deepspeed_enabled: | |
| self.deepspeed = backup_deepspeed | |
| def train(self): | |
| args = self.args | |
| accelerator = self.accelerator | |
| optimizer = self.optimizer | |
| model = self.model | |
| ref_policy = self.ref_model | |
| reward_model = self.reward_model | |
| processing_class = self.processing_class | |
| dataloader = self.dataloader | |
| device = accelerator.device | |
| def repeat_generator(): | |
| while True: | |
| yield from dataloader | |
| iter_dataloader = iter(repeat_generator()) | |
| generation_config = GenerationConfig( | |
| max_new_tokens=args.response_length, | |
| temperature=(args.temperature + 1e-7), | |
| top_k=0.0, | |
| top_p=1.0, | |
| do_sample=True, | |
| ) | |
| accelerator.print("===training policy===") | |
| start_time = time.time() | |
| stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps) | |
| approxkl_stats = torch.zeros(stats_shape, device=device) | |
| pg_clipfrac_stats = torch.zeros(stats_shape, device=device) | |
| pg_loss_stats = torch.zeros(stats_shape, device=device) | |
| vf_loss_stats = torch.zeros(stats_shape, device=device) | |
| vf_clipfrac_stats = torch.zeros(stats_shape, device=device) | |
| entropy_stats = torch.zeros(stats_shape, device=device) | |
| ratio_stats = torch.zeros(stats_shape, device=device) | |
| model.train() | |
| # trainer state initialization | |
| self.state.global_step = 0 | |
| self.state.episode = 0 | |
| self.state.max_steps = args.num_total_batches * args.num_mini_batches | |
| self.state.num_train_epochs = args.total_episodes / self.train_dataset_len | |
| # Compute absolute values for logging, eval, and save if given as ratio | |
| if args.logging_steps is not None: | |
| if args.logging_steps < 1: | |
| self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps) | |
| else: | |
| self.state.logging_steps = args.logging_steps | |
| if args.eval_steps is not None: | |
| if args.eval_steps < 1: | |
| self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps) | |
| else: | |
| self.state.eval_steps = args.eval_steps | |
| if args.save_steps is not None: | |
| if args.save_steps < 1: | |
| self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps) | |
| else: | |
| self.state.save_steps = args.save_steps | |
| self.control = self.callback_handler.on_train_begin(args, self.state, self.control) | |
| # backward compatibility | |
| if self.is_deepspeed_enabled: | |
| self.deepspeed = self.model | |
| self.model_wrapped = self.model | |
| for update in range(1, args.num_total_batches + 1): | |
| self.state.episode += 1 * args.batch_size | |
| data = next(iter_dataloader) | |
| with torch.no_grad(): | |
| queries = data["input_ids"].to(device) | |
| context_length = queries.shape[1] | |
| responses = [] | |
| postprocessed_responses = [] | |
| logprobs = [] | |
| ref_logprobs = [] | |
| scores = [] | |
| sequence_lengths = [] | |
| values = [] | |
| with unwrap_model_for_generation( | |
| self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation | |
| ) as unwrapped_model: | |
| query_responses, logitss = batch_generation( | |
| unwrapped_model.policy, | |
| queries, | |
| args.local_rollout_forward_batch_size, | |
| processing_class.pad_token_id, | |
| generation_config, | |
| ) | |
| for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size): | |
| query = queries[i : i + args.local_rollout_forward_batch_size] | |
| query_response = query_responses[i : i + args.local_rollout_forward_batch_size] | |
| response = query_response[:, context_length:] | |
| logits = logitss[i : i + args.local_rollout_forward_batch_size] | |
| logprob = selective_log_softmax(logits, response) | |
| del logits | |
| torch.cuda.empty_cache() | |
| if ref_policy is None: | |
| with self.null_ref_context(): | |
| ref_output = forward(model.policy, query_response, processing_class.pad_token_id) | |
| else: | |
| ref_output = forward(ref_policy, query_response, processing_class.pad_token_id) | |
| ref_logits = ref_output.logits[:, context_length - 1 : -1] | |
| ref_logits /= args.temperature + 1e-7 | |
| ref_logprob = selective_log_softmax(ref_logits, response) | |
| del ref_output, ref_logits | |
| torch.cuda.empty_cache() | |
| # Response Processing 1. truncate response after the first occurrence of `stop_token_id` | |
| postprocessed_response = response | |
| if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0 | |
| postprocessed_response = truncate_response( | |
| self.stop_token_id, processing_class.pad_token_id, response | |
| ) | |
| # Response Processing 2. run reward model on the truncated responses | |
| postprocessed_query_response = torch.cat((query, postprocessed_response), 1) | |
| sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1 | |
| unwrapped_value_model = accelerator.unwrap_model(model).value_model | |
| full_value, _, _ = get_reward( | |
| unwrapped_value_model, query_response, processing_class.pad_token_id, context_length | |
| ) | |
| value = full_value[:, context_length - 1 : -1].squeeze(-1) | |
| _, score, _ = get_reward( | |
| reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length | |
| ) | |
| responses.append(response) | |
| postprocessed_responses.append(postprocessed_response) | |
| logprobs.append(logprob) | |
| ref_logprobs.append(ref_logprob) | |
| sequence_lengths.append(sequence_length) | |
| scores.append(score) | |
| values.append(value) | |
| responses = torch.cat(responses, 0) | |
| postprocessed_responses = torch.cat(postprocessed_responses, 0) | |
| logprobs = torch.cat(logprobs, 0) | |
| ref_logprobs = torch.cat(ref_logprobs, 0) | |
| sequence_lengths = torch.cat(sequence_lengths, 0) | |
| scores = torch.cat(scores, 0) | |
| values = torch.cat(values, 0) | |
| del (logprob, ref_logprob, full_value, value, score, unwrapped_model) | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id | |
| # Completions not passing that filter will receive a lower score. | |
| contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1) | |
| if self.args.missing_eos_penalty is not None: | |
| scores[~contain_eos_token] -= self.args.missing_eos_penalty | |
| # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}") | |
| # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw | |
| response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1) | |
| padding_mask = response_idxs > sequence_lengths.unsqueeze(1) | |
| logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB) | |
| ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB) | |
| sequence_lengths_p1 = sequence_lengths + 1 | |
| padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1)) | |
| values = torch.masked_fill(values, padding_mask_p1, 0) | |
| # 4. compute rewards | |
| kl = logprobs - ref_logprobs | |
| non_score_reward = -args.kl_coef * kl | |
| rewards = non_score_reward.clone() | |
| actual_start = torch.arange(rewards.size(0), device=rewards.device) | |
| actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths) | |
| rewards[[actual_start, actual_end]] += scores | |
| # 5. whiten rewards | |
| if args.whiten_rewards: | |
| rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False) | |
| rewards = torch.masked_fill(rewards, padding_mask_p1, 0) | |
| # 6. compute advantages and returns | |
| lastgaelam = 0 | |
| advantages_reversed = [] | |
| gen_length = responses.shape[1] | |
| for t in reversed(range(gen_length)): | |
| nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0 | |
| delta = rewards[:, t] + args.gamma * nextvalues - values[:, t] | |
| lastgaelam = delta + args.gamma * args.lam * lastgaelam | |
| advantages_reversed.append(lastgaelam) | |
| advantages = torch.stack(advantages_reversed[::-1], axis=1) | |
| returns = advantages + values | |
| advantages = masked_whiten(advantages, ~padding_mask) | |
| advantages = torch.masked_fill(advantages, padding_mask, 0) | |
| torch.cuda.empty_cache() | |
| # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch | |
| for ppo_epoch_idx in range(args.num_ppo_epochs): | |
| b_inds = np.random.permutation(args.local_batch_size) | |
| minibatch_idx = 0 | |
| for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size): | |
| mini_batch_end = mini_batch_start + args.local_mini_batch_size | |
| mini_batch_inds = b_inds[mini_batch_start:mini_batch_end] | |
| gradient_accumulation_idx = 0 | |
| for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size): | |
| with accelerator.accumulate(model): | |
| micro_batch_end = micro_batch_start + args.per_device_train_batch_size | |
| micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end] | |
| mb_advantage = advantages[micro_batch_inds] | |
| mb_responses = responses[micro_batch_inds] | |
| mb_query_responses = query_responses[micro_batch_inds] | |
| mb_logprobs = logprobs[micro_batch_inds] | |
| mb_return = returns[micro_batch_inds] | |
| mb_values = values[micro_batch_inds] | |
| output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id) | |
| logits = output.logits[:, context_length - 1 : -1] | |
| logits /= args.temperature + 1e-7 | |
| new_logprobs = selective_log_softmax(logits, mb_responses) | |
| new_logprobs = torch.masked_fill( | |
| new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB | |
| ) | |
| vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1) | |
| vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0) | |
| vpredclipped = torch.clamp( | |
| vpred, | |
| mb_values - args.cliprange_value, | |
| mb_values + args.cliprange_value, | |
| ) | |
| vf_losses1 = torch.square(vpred - mb_return) | |
| vf_losses2 = torch.square(vpredclipped - mb_return) | |
| vf_loss_max = torch.max(vf_losses1, vf_losses2) | |
| vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds]) | |
| vf_clipfrac = masked_mean( | |
| (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds] | |
| ) | |
| logprobs_diff = new_logprobs - mb_logprobs | |
| ratio = torch.exp(logprobs_diff) | |
| pg_losses = -mb_advantage * ratio | |
| pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange) | |
| pg_loss_max = torch.max(pg_losses, pg_losses2) | |
| pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds]) | |
| loss = pg_loss + args.vf_coef * vf_loss | |
| accelerator.backward(loss) | |
| optimizer.step() | |
| optimizer.zero_grad() | |
| with torch.no_grad(): | |
| pg_clipfrac = masked_mean( | |
| (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds] | |
| ) | |
| prob_dist = torch.nn.functional.softmax(logits, dim=-1) | |
| entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1) | |
| approxkl = 0.5 * (logprobs_diff**2).mean() | |
| approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl | |
| pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ( | |
| pg_clipfrac | |
| ) | |
| pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss | |
| vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss | |
| vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ( | |
| vf_clipfrac | |
| ) | |
| entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean() | |
| ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean() | |
| gradient_accumulation_idx += 1 | |
| minibatch_idx += 1 | |
| # del everything and empty cache | |
| # fmt: off | |
| del ( | |
| output, vpred_temp, logits, new_logprobs, vpred, vpredclipped, | |
| vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max, | |
| pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return, | |
| mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs, | |
| ) | |
| # fmt: on | |
| torch.cuda.empty_cache() | |
| with torch.no_grad(): | |
| mean_kl = kl.sum(1).mean() | |
| mean_entropy = (-logprobs).sum(1).mean() | |
| mean_non_score_reward = non_score_reward.sum(1).mean() | |
| rlhf_reward = mean_non_score_reward + scores.mean() | |
| eps = int(self.state.episode / (time.time() - start_time)) | |
| metrics = {} | |
| metrics["eps"] = eps | |
| metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item() | |
| metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item() | |
| metrics["objective/non_score_reward"] = ( | |
| self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() | |
| ) | |
| metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item() | |
| metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item() | |
| metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item() | |
| metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item() | |
| metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item() | |
| metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item() | |
| metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item() | |
| metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item() | |
| metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item() | |
| metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item() | |
| metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item() | |
| metrics["lr"] = self.lr_scheduler.get_last_lr()[0] | |
| metrics["episode"] = self.state.episode | |
| self.state.epoch = self.state.episode / self.train_dataset_len # used by self.log | |
| self.state.global_step += 1 | |
| self.log(metrics) | |
| self.lr_scheduler.step() | |
| self.control = self.callback_handler.on_step_end(args, self.state, self.control) | |
| if self.control.should_save: | |
| self._save_checkpoint(model, trial=None) | |
| self.control = self.callback_handler.on_save(self.args, self.state, self.control) | |
| del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0: | |
| self.generate_completions(sampling=True) | |
| torch.cuda.empty_cache() | |
| del ( | |
| query_responses, | |
| responses, | |
| postprocessed_responses, | |
| logprobs, | |
| ref_logprobs, | |
| values, | |
| sequence_lengths, | |
| contain_eos_token, | |
| sequence_lengths_p1, | |
| response_idxs, | |
| padding_mask, | |
| padding_mask_p1, | |
| rewards, | |
| actual_start, | |
| actual_end, | |
| advantages, | |
| returns, | |
| ) | |
| torch.cuda.empty_cache() | |
| # HF trainer specifics | |
| self.control = self.callback_handler.on_train_end(args, self.state, self.control) | |
| if self.control.should_save: | |
| self._save_checkpoint(model, trial=None, metrics=None) | |
| self.control = self.callback_handler.on_save(self.args, self.state, self.control) | |
| def generate_completions(self, sampling: bool = False): | |
| args = self.args | |
| processing_class = self.processing_class | |
| generation_config = GenerationConfig( | |
| max_new_tokens=self.args.response_length, | |
| temperature=(0.01 + 1e-7), | |
| top_k=0.0, | |
| top_p=1.0, | |
| do_sample=True, | |
| ) | |
| table = defaultdict(list) | |
| with unwrap_model_for_generation( | |
| self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation | |
| ) as unwrapped_model: | |
| for batch in self.eval_dataloader: | |
| query = batch["input_ids"] | |
| with torch.no_grad(): | |
| context_length = query.shape[1] | |
| query_response, _ = batch_generation( | |
| unwrapped_model.policy, | |
| query, | |
| query.shape[0], | |
| processing_class.pad_token_id, | |
| generation_config, | |
| ) | |
| response = query_response[:, context_length:] | |
| postprocessed_response = response | |
| if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0 | |
| postprocessed_response = truncate_response( | |
| self.stop_token_id, processing_class.pad_token_id, response | |
| ) | |
| table["query"].extend( | |
| gather_object(processing_class.batch_decode(query, skip_special_tokens=True)) | |
| ) | |
| table["model response"].extend( | |
| gather_object(processing_class.batch_decode(postprocessed_response)) | |
| ) | |
| postprocessed_query_response = torch.cat((query, postprocessed_response), 1) | |
| _, score, _ = get_reward( | |
| self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length | |
| ) | |
| table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy()) | |
| if sampling: | |
| break | |
| df = pd.DataFrame(table) | |
| if self.accelerator.is_main_process: | |
| print_rich_table(df.iloc[0 : 0 + 5]) | |
| if "wandb" in args.report_to: | |
| import wandb | |
| if wandb.run is not None: | |
| wandb.log({"completions": wandb.Table(dataframe=df)}) | |
| if "comet_ml" in args.report_to: | |
| log_table_to_comet_experiment( | |
| name="completions.csv", | |
| table=df, | |
| ) | |
| def create_model_card( | |
| self, | |
| model_name: Optional[str] = None, | |
| dataset_name: Optional[str] = None, | |
| tags: Union[str, list[str], None] = None, | |
| ): | |
| """ | |
| Creates a draft of a model card using the information available to the `Trainer`. | |
| Args: | |
| model_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the model. | |
| dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the dataset used for training. | |
| tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
| Tags to be associated with the model card. | |
| """ | |
| if not self.is_world_process_zero(): | |
| return | |
| if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
| base_model = self.model.config._name_or_path | |
| else: | |
| base_model = None | |
| tags = tags or [] | |
| if isinstance(tags, str): | |
| tags = [tags] | |
| if hasattr(self.model.config, "unsloth_version"): | |
| tags.append("unsloth") | |
| citation = textwrap.dedent("""\ | |
| @article{mziegler2019fine-tuning, | |
| title = {{Fine-Tuning Language Models from Human Preferences}}, | |
| author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving}, | |
| year = 2019, | |
| eprint = {arXiv:1909.08593} | |
| }""") | |
| model_card = generate_model_card( | |
| base_model=base_model, | |
| model_name=model_name, | |
| hub_model_id=self.hub_model_id, | |
| dataset_name=dataset_name, | |
| tags=tags, | |
| wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
| comet_url=get_comet_experiment_url(), | |
| trainer_name="PPO", | |
| trainer_citation=citation, | |
| paper_title="Fine-Tuning Language Models from Human Preferences", | |
| paper_id="1909.08593", | |
| ) | |
| model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
| class UnslothPPOTrainer(_UnslothPPOTrainer): | |
| """ | |
| """ | |
| def __init__( | |
| self, | |
| args, | |
| processing_class, | |
| model, | |
| ref_model, | |
| reward_model, | |
| train_dataset, | |
| value_model = None, | |
| data_collator = None, | |
| eval_dataset = None, | |
| callbacks = None, | |
| peft_config = None, | |
| **kwargs | |
| ): | |
| if args is None: args = UnslothPPOConfig() | |
| use_bf16 = getattr(args, 'bf16', False) | |
| use_fp16 = getattr(args, 'fp16', False) | |
| force_float32 = False | |
| if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
| print('Unsloth: Switching to float32 training since model cannot work with float16') | |
| force_float32 = True | |
| mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
| dtype = getattr(model.config, 'torch_dtype', None) | |
| if dtype is None: dtype = model.get_input_embeddings().dtype | |
| from unsloth_zoo.utils import _get_dtype | |
| dtype = _get_dtype(dtype) | |
| float16 = dtype == torch.float16 | |
| if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
| if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
| if force_float32: | |
| args.fp16 = False | |
| args.bf16 = False | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
| elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
| args.fp16 = float16 | |
| args.bf16 = not float16 | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
| if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
| args.eval_strategy = 'steps' | |
| if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
| ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
| if ga_steps is not None and ga_steps > 1: | |
| from transformers import __version__ as transformers_version | |
| if Version(transformers_version) <= Version('4.45.2'): | |
| print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
| '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
| if getattr(args, 'eval_strategy', 'no') != 'no': | |
| eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
| if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
| if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
| fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
| bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
| if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
| if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
| if force_float32: | |
| args.bf16_full_eval = False | |
| args.fp16_full_eval = False | |
| elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
| args.bf16_full_eval = True | |
| args.fp16_full_eval = False | |
| elif not bf16_full_eval and not fp16_full_eval: | |
| args.bf16_full_eval = args.bf16 | |
| args.fp16_full_eval = args.fp16 | |
| _output_logits = False | |
| if locals().get('compute_metrics', None) is not None: _output_logits = True | |
| if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
| if _output_logits: | |
| os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
| if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
| pass | |
| else: | |
| model_max_seq_length = getattr(model, 'max_seq_length', None) | |
| args_max_seq_length = getattr(args, 'max_seq_length', None) | |
| if args_max_seq_length is None and model_max_seq_length is not None: | |
| max_seq_length = model.max_seq_length | |
| if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
| if model is not None and hasattr(model, 'for_training'): | |
| model.for_training() | |
| if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
| if 'processing_class' in locals(): | |
| if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
| if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
| __tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
| from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) | |
| elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer) | |
| else: | |
| if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
| if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
| if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq): | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) | |
| else: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) | |
| other_metrics = [] | |
| from unsloth_zoo.logging_utils import PatchRLStatistics | |
| PatchRLStatistics('ppo_trainer', other_metrics) | |
| super().__init__( | |
| args = args, | |
| processing_class = processing_class, | |
| model = model, | |
| ref_model = ref_model, | |
| reward_model = reward_model, | |
| train_dataset = train_dataset, | |
| value_model = value_model, | |
| data_collator = data_collator, | |
| eval_dataset = eval_dataset, | |
| callbacks = callbacks, | |
| peft_config = peft_config,**kwargs) | |
| if hasattr(self, 'neftune_hook_handle'): | |
| self.neftune_hook_handle.remove() | |
| if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
| if getattr(args, 'neftune_noise_alpha', None) is not None: | |
| model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
| pass | |
| pass | |