Spaces:
Runtime error
Runtime error
| """ | |
| 2025.3.17 | |
| 2025.3.19 | |
| 4.50.3 | |
| 0.15.2 | |
| __UNSLOTH_VERSIONING__ | |
| """ | |
| from torch import Tensor | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from trl.trainer.online_dpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalPrediction, F, FeatureExtractionMixin, GenerationConfig, IterableDataset, OnlineDPOConfig, OnlineDPOTrainer, OptimizerNames, Optional, PREFIX_CHECKPOINT_DIR, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, Trainer, TrainerCallback, Union, apply_chat_template, create_reference_model, datasets, disable_dropout_in_model, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_peft_available, is_wandb_available, jinja2, logging, maybe_apply_chat_template, nn, np, os, prepare_deepspeed, seed_worker, textwrap, torch, transformers, truncate_right, unwrap_model_for_generation, version, wandb, warnings, wraps, F, is_conversational, os, torch) | |
| import os | |
| from typing import * | |
| from dataclasses import dataclass, field | |
| from packaging.version import Version | |
| import torch | |
| import numpy as np | |
| from contextlib import nullcontext | |
| from torch.nn import functional as F | |
| from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
| torch_compile_options = { | |
| "epilogue_fusion" : True, | |
| "max_autotune" : False, | |
| "shape_padding" : True, | |
| "trace.enabled" : False, | |
| "triton.cudagraphs" : False, | |
| } | |
| def selective_log_softmax(logits, index): | |
| logits = logits.to(torch.float32) | |
| selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
| # loop to reduce peak mem consumption | |
| # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
| logsumexp_values = torch.logsumexp(logits, dim = -1) | |
| per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
| return per_token_logps | |
| def vLLMSamplingParams(**kwargs): | |
| from vllm import SamplingParams | |
| sampling_params = SamplingParams(**kwargs) | |
| sampling_params._set_kwargs = kwargs | |
| return sampling_params | |
| class UnslothOnlineDPOConfig(OnlineDPOConfig): | |
| """ | |
| Configuration class for the [`OnlineDPOTrainer`]. | |
| Using [`~transformers.HfArgumentParser`] we can turn this class into | |
| [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
| command line. | |
| Parameters: | |
| learning_rate (`float`, *optional*, defaults to `5e-7`): | |
| Initial learning rate for [`AdamW`] optimizer. The default value replaces that of | |
| [`~transformers.TrainingArguments`]. | |
| reward_model_path (`str` or `None`, *optional*, defaults to `None`): | |
| Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both. | |
| judge (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both. | |
| max_new_tokens (`int`, *optional*, defaults to `64`): | |
| Maximum number of tokens to generate per completion. | |
| max_length (`int`, *optional*, defaults to `256`): | |
| Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the | |
| sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as | |
| possible. | |
| temperature (`float`, *optional*, defaults to `0.9`): | |
| Temperature for sampling. The higher the temperature, the more random the completions. | |
| missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`): | |
| Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage | |
| to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive | |
| value. | |
| beta (`float` or `list[float]`, *optional*, defaults to `0.1`): | |
| Parameter controlling the deviation from the reference model. Higher β means less deviation from the | |
| reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in | |
| the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the β is | |
| selected for each new epoch and the last β is used for the rest of the epochs. | |
| loss_type (`str`, *optional*, defaults to `"sigmoid"`): | |
| Type of loss to use. Possible values are: | |
| - `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper. | |
| - `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper. | |
| dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
| Number of processes to use for processing the dataset. | |
| disable_dropout (`bool`, *optional*, defaults to `True`): | |
| Whether to disable dropout in the model and reference model. | |
| use_vllm (`bool`, *optional*, defaults to `False`): | |
| Whether to use vLLM for generating completions. Requires vLLM to be installed (`pip install vllm`). | |
| ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): | |
| This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, | |
| improving generation speed. However, disabling this option allows training models that exceed the VRAM | |
| capacity of a single GPU, albeit at the cost of slower generation. | |
| """ | |
| vllm_sampling_params: Optional[Any] = field( | |
| default = None, | |
| metadata = {'help': 'vLLM SamplingParams'}, | |
| ) | |
| unsloth_num_chunks : Optional[int] = field( | |
| default = -1, | |
| metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
| ) | |
| def __init__( | |
| self, | |
| output_dir = None, | |
| overwrite_output_dir = None, | |
| do_train = False, | |
| do_eval = False, | |
| do_predict = False, | |
| eval_strategy = 'no', | |
| prediction_loss_only = False, | |
| per_device_train_batch_size = 4, | |
| per_device_eval_batch_size = 4, | |
| per_gpu_train_batch_size = None, | |
| per_gpu_eval_batch_size = None, | |
| gradient_accumulation_steps = 2, | |
| eval_accumulation_steps = 2, | |
| eval_delay = 0, | |
| torch_empty_cache_steps = 250, | |
| learning_rate = 5e-05, | |
| weight_decay = 0.01, | |
| adam_beta1 = 0.9, | |
| adam_beta2 = 0.999, | |
| adam_epsilon = 1e-08, | |
| max_grad_norm = 1.0, | |
| num_train_epochs = 3.0, | |
| max_steps = -1, | |
| lr_scheduler_type = 'linear', | |
| warmup_ratio = 0.1, | |
| warmup_steps = 0, | |
| log_level = 'passive', | |
| log_level_replica = 'warning', | |
| log_on_each_node = True, | |
| logging_dir = None, | |
| logging_strategy = 'steps', | |
| logging_first_step = False, | |
| logging_steps = 1, | |
| logging_nan_inf_filter = False, | |
| save_strategy = 'steps', | |
| save_steps = 500, | |
| save_total_limit = None, | |
| save_safetensors = True, | |
| save_on_each_node = False, | |
| save_only_model = False, | |
| restore_callback_states_from_checkpoint = False, | |
| no_cuda = False, | |
| use_cpu = False, | |
| use_mps_device = False, | |
| seed = 3407, | |
| data_seed = 3407, | |
| jit_mode_eval = False, | |
| use_ipex = False, | |
| bf16 = False, | |
| fp16 = False, | |
| fp16_opt_level = 'O1', | |
| half_precision_backend = 'auto', | |
| bf16_full_eval = False, | |
| fp16_full_eval = False, | |
| tf32 = None, | |
| local_rank = -1, | |
| ddp_backend = None, | |
| tpu_num_cores = None, | |
| tpu_metrics_debug = False, | |
| debug = '', | |
| dataloader_drop_last = False, | |
| eval_steps = None, | |
| dataloader_num_workers = 0, | |
| dataloader_prefetch_factor = None, | |
| past_index = -1, | |
| run_name = None, | |
| disable_tqdm = None, | |
| remove_unused_columns = True, | |
| label_names = None, | |
| load_best_model_at_end = False, | |
| metric_for_best_model = None, | |
| greater_is_better = None, | |
| ignore_data_skip = False, | |
| fsdp = '', | |
| fsdp_min_num_params = 0, | |
| fsdp_config = None, | |
| tp_size = 0, | |
| fsdp_transformer_layer_cls_to_wrap = None, | |
| accelerator_config = None, | |
| deepspeed = None, | |
| label_smoothing_factor = 0.0, | |
| optim = 'adamw_8bit', | |
| optim_args = None, | |
| adafactor = False, | |
| group_by_length = False, | |
| length_column_name = 'length', | |
| report_to = None, | |
| ddp_find_unused_parameters = None, | |
| ddp_bucket_cap_mb = None, | |
| ddp_broadcast_buffers = None, | |
| dataloader_pin_memory = True, | |
| dataloader_persistent_workers = False, | |
| skip_memory_metrics = True, | |
| use_legacy_prediction_loop = False, | |
| push_to_hub = False, | |
| resume_from_checkpoint = None, | |
| hub_model_id = None, | |
| hub_strategy = 'every_save', | |
| hub_token = None, | |
| hub_private_repo = None, | |
| hub_always_push = False, | |
| gradient_checkpointing = False, | |
| gradient_checkpointing_kwargs = None, | |
| include_inputs_for_metrics = False, | |
| eval_do_concat_batches = True, | |
| fp16_backend = 'auto', | |
| evaluation_strategy = None, | |
| push_to_hub_model_id = None, | |
| push_to_hub_organization = None, | |
| push_to_hub_token = None, | |
| mp_parameters = '', | |
| auto_find_batch_size = False, | |
| full_determinism = False, | |
| torchdynamo = None, | |
| ray_scope = 'last', | |
| ddp_timeout = 1800, | |
| torch_compile = False, | |
| torch_compile_backend = None, | |
| torch_compile_mode = None, | |
| dispatch_batches = None, | |
| split_batches = None, | |
| include_tokens_per_second = False, | |
| include_num_input_tokens_seen = False, | |
| neftune_noise_alpha = None, | |
| optim_target_modules = None, | |
| batch_eval_metrics = False, | |
| eval_on_start = False, | |
| use_liger_kernel = False, | |
| eval_use_gather_object = False, | |
| average_tokens_across_devices = False, | |
| reward_model_path = None, | |
| judge = None, | |
| max_new_tokens = 64, | |
| max_length = 512, | |
| temperature = 0.9, | |
| missing_eos_penalty = None, | |
| loss_type = 'sigmoid', | |
| dataset_num_proc = None, | |
| disable_dropout = True, | |
| use_vllm = False, | |
| ds3_gather_for_generation = True, | |
| vllm_sampling_params = None, | |
| unsloth_num_chunks = -1, | |
| **kwargs, | |
| ): | |
| if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
| if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
| if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
| output_dir = 'unsloth_training_checkpoints' | |
| save_strategy = 'no' | |
| if dataset_num_proc is None: | |
| from multiprocessing import cpu_count | |
| dataset_num_proc = cpu_count() | |
| super().__init__( | |
| output_dir = output_dir, | |
| overwrite_output_dir = overwrite_output_dir, | |
| do_train = do_train, | |
| do_eval = do_eval, | |
| do_predict = do_predict, | |
| eval_strategy = eval_strategy, | |
| prediction_loss_only = prediction_loss_only, | |
| per_device_train_batch_size = per_device_train_batch_size, | |
| per_device_eval_batch_size = per_device_eval_batch_size, | |
| per_gpu_train_batch_size = per_gpu_train_batch_size, | |
| per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
| gradient_accumulation_steps = gradient_accumulation_steps, | |
| eval_accumulation_steps = eval_accumulation_steps, | |
| eval_delay = eval_delay, | |
| torch_empty_cache_steps = torch_empty_cache_steps, | |
| learning_rate = learning_rate, | |
| weight_decay = weight_decay, | |
| adam_beta1 = adam_beta1, | |
| adam_beta2 = adam_beta2, | |
| adam_epsilon = adam_epsilon, | |
| max_grad_norm = max_grad_norm, | |
| num_train_epochs = num_train_epochs, | |
| max_steps = max_steps, | |
| lr_scheduler_type = lr_scheduler_type, | |
| warmup_ratio = warmup_ratio, | |
| warmup_steps = warmup_steps, | |
| log_level = log_level, | |
| log_level_replica = log_level_replica, | |
| log_on_each_node = log_on_each_node, | |
| logging_dir = logging_dir, | |
| logging_strategy = logging_strategy, | |
| logging_first_step = logging_first_step, | |
| logging_steps = logging_steps, | |
| logging_nan_inf_filter = logging_nan_inf_filter, | |
| save_strategy = save_strategy, | |
| save_steps = save_steps, | |
| save_total_limit = save_total_limit, | |
| save_safetensors = save_safetensors, | |
| save_on_each_node = save_on_each_node, | |
| save_only_model = save_only_model, | |
| restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
| no_cuda = no_cuda, | |
| use_cpu = use_cpu, | |
| use_mps_device = use_mps_device, | |
| seed = seed, | |
| data_seed = data_seed, | |
| jit_mode_eval = jit_mode_eval, | |
| use_ipex = use_ipex, | |
| bf16 = bf16, | |
| fp16 = fp16, | |
| fp16_opt_level = fp16_opt_level, | |
| half_precision_backend = half_precision_backend, | |
| bf16_full_eval = bf16_full_eval, | |
| fp16_full_eval = fp16_full_eval, | |
| tf32 = tf32, | |
| local_rank = local_rank, | |
| ddp_backend = ddp_backend, | |
| tpu_num_cores = tpu_num_cores, | |
| tpu_metrics_debug = tpu_metrics_debug, | |
| debug = debug, | |
| dataloader_drop_last = dataloader_drop_last, | |
| eval_steps = eval_steps, | |
| dataloader_num_workers = dataloader_num_workers, | |
| dataloader_prefetch_factor = dataloader_prefetch_factor, | |
| past_index = past_index, | |
| run_name = run_name, | |
| disable_tqdm = disable_tqdm, | |
| remove_unused_columns = remove_unused_columns, | |
| label_names = label_names, | |
| load_best_model_at_end = load_best_model_at_end, | |
| metric_for_best_model = metric_for_best_model, | |
| greater_is_better = greater_is_better, | |
| ignore_data_skip = ignore_data_skip, | |
| fsdp = fsdp, | |
| fsdp_min_num_params = fsdp_min_num_params, | |
| fsdp_config = fsdp_config, | |
| tp_size = tp_size, | |
| fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
| accelerator_config = accelerator_config, | |
| deepspeed = deepspeed, | |
| label_smoothing_factor = label_smoothing_factor, | |
| optim = optim, | |
| optim_args = optim_args, | |
| adafactor = adafactor, | |
| group_by_length = group_by_length, | |
| length_column_name = length_column_name, | |
| report_to = report_to, | |
| ddp_find_unused_parameters = ddp_find_unused_parameters, | |
| ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
| ddp_broadcast_buffers = ddp_broadcast_buffers, | |
| dataloader_pin_memory = dataloader_pin_memory, | |
| dataloader_persistent_workers = dataloader_persistent_workers, | |
| skip_memory_metrics = skip_memory_metrics, | |
| use_legacy_prediction_loop = use_legacy_prediction_loop, | |
| push_to_hub = push_to_hub, | |
| resume_from_checkpoint = resume_from_checkpoint, | |
| hub_model_id = hub_model_id, | |
| hub_strategy = hub_strategy, | |
| hub_token = hub_token, | |
| hub_private_repo = hub_private_repo, | |
| hub_always_push = hub_always_push, | |
| gradient_checkpointing = gradient_checkpointing, | |
| gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
| include_inputs_for_metrics = include_inputs_for_metrics, | |
| eval_do_concat_batches = eval_do_concat_batches, | |
| fp16_backend = fp16_backend, | |
| evaluation_strategy = evaluation_strategy, | |
| push_to_hub_model_id = push_to_hub_model_id, | |
| push_to_hub_organization = push_to_hub_organization, | |
| push_to_hub_token = push_to_hub_token, | |
| mp_parameters = mp_parameters, | |
| auto_find_batch_size = auto_find_batch_size, | |
| full_determinism = full_determinism, | |
| torchdynamo = torchdynamo, | |
| ray_scope = ray_scope, | |
| ddp_timeout = ddp_timeout, | |
| torch_compile = torch_compile, | |
| torch_compile_backend = torch_compile_backend, | |
| torch_compile_mode = torch_compile_mode, | |
| dispatch_batches = dispatch_batches, | |
| split_batches = split_batches, | |
| include_tokens_per_second = include_tokens_per_second, | |
| include_num_input_tokens_seen = include_num_input_tokens_seen, | |
| neftune_noise_alpha = neftune_noise_alpha, | |
| optim_target_modules = optim_target_modules, | |
| batch_eval_metrics = batch_eval_metrics, | |
| eval_on_start = eval_on_start, | |
| use_liger_kernel = use_liger_kernel, | |
| eval_use_gather_object = eval_use_gather_object, | |
| average_tokens_across_devices = average_tokens_across_devices, | |
| reward_model_path = reward_model_path, | |
| judge = judge, | |
| max_new_tokens = max_new_tokens, | |
| max_length = max_length, | |
| temperature = temperature, | |
| missing_eos_penalty = missing_eos_penalty, | |
| loss_type = loss_type, | |
| dataset_num_proc = dataset_num_proc, | |
| disable_dropout = disable_dropout, | |
| use_vllm = use_vllm, | |
| ds3_gather_for_generation = ds3_gather_for_generation,**kwargs) | |
| self.vllm_sampling_params = vllm_sampling_params | |
| self.unsloth_num_chunks = unsloth_num_chunks | |
| pass | |
| class _UnslothOnlineDPOTrainer(Trainer): | |
| r"""""" | |
| _tag_names = ["trl", "online-dpo"] | |
| def __init__( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module], | |
| ref_model: Union[PreTrainedModel, nn.Module, None] = None, | |
| reward_model: Union[PreTrainedModel, nn.Module, None] = None, | |
| judge: Optional[BasePairwiseJudge] = None, | |
| args: Optional[OnlineDPOConfig] = None, | |
| data_collator: Optional[DataCollator] = None, | |
| train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None, | |
| eval_dataset: Optional[Union[Dataset, dict[str, Dataset], "datasets.Dataset"]] = None, | |
| processing_class: Optional[ | |
| Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
| ] = None, | |
| reward_processing_class: Optional[PreTrainedTokenizerBase] = None, | |
| peft_config: Optional[dict] = None, | |
| compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, | |
| callbacks: Optional[list[TrainerCallback]] = None, | |
| optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
| preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
| ) -> None: | |
| if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm') and (getattr(args, 'use_vllm', False) == False): args.use_vllm = True | |
| if ref_model is model: | |
| raise ValueError( | |
| "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " | |
| "same as `model`, either omit the `ref_model` argument or pass `None`." | |
| ) | |
| self.ref_model = ref_model | |
| if reward_model is not None and judge is not None: | |
| warnings.warn( | |
| "Both `reward_model` and `judge` are provided. Please choose provide only one of them. " | |
| "Ignoring `judge` and using `reward_model`.", | |
| UserWarning, | |
| ) | |
| judge = None | |
| elif reward_model is None and judge is None: | |
| raise ValueError("Either `reward_model` or `judge` must be provided.") | |
| self.reward_model = reward_model | |
| self.reward_processing_class = reward_processing_class | |
| self.judge = judge | |
| if args.missing_eos_penalty is not None and judge is not None: | |
| raise ValueError("`missing_eos_penalty` is not supported when `judge` is provided.") | |
| if args is None: | |
| raise ValueError("`args` must be provided.") | |
| # Check that the processing_class is provided | |
| if processing_class is None: | |
| raise ValueError("`processing_class` must be provided.") | |
| # Convert to PEFT model if peft_config is provided | |
| if False: | |
| # Check if PEFT is available | |
| if not is_peft_available(): | |
| raise ImportError( | |
| "PEFT is not available and passed `peft_config`. Please install PEFT with " | |
| "`pip install peft` to use it." | |
| ) | |
| # If the model is already a PeftModel, we need to merge and unload it. | |
| # Further information here: https://huggingface.co/docs/trl/dpo_trainer#reference-model-considerations-with-peft | |
| if isinstance(model, PeftModel): | |
| model = model.merge_and_unload() | |
| # Get peft model with the given config | |
| model = model | |
| # Disable dropout in the model and reference model | |
| if args.disable_dropout: | |
| disable_dropout_in_model(model) | |
| if self.ref_model is not None: | |
| disable_dropout_in_model(self.ref_model) | |
| # Handle the ref_model | |
| # Usually, the user wants the ref model to be the initial version of the model. When using PEFT, it's easy to | |
| # get the ref model, as it's just the model with a disabled adapter. When not using PEFT, we need to create | |
| # the ref model from the model by copying it and disable the gradients and set it in evaluation mode. | |
| if ref_model is None: # No ref model provided, the most common case | |
| if False: | |
| self.ref_model = create_reference_model(model) # copy, disable gradients, set eval mode | |
| else: | |
| self.ref_model = None # we don't need a ref model here, we can just disable the adapter. | |
| else: # rare case, the user provided a ref model | |
| self.ref_model = ref_model | |
| self.ref_model.eval() | |
| # Disable the gradient and set the reward model in eval mode | |
| if self.reward_model is not None: | |
| self.reward_model.eval() | |
| # Define the collator is not provided | |
| if data_collator is None: | |
| data_collator = DPODataCollatorWithPadding(pad_token_id=processing_class.pad_token_id) | |
| self.max_length = args.max_length | |
| self.stats = { | |
| "objective/kl": [], | |
| "objective/entropy": [], | |
| "objective/non_score_reward": [], | |
| "rewards/chosen": [], | |
| "rewards/rejected": [], | |
| "rewards/accuracies": [], | |
| "rewards/margins": [], | |
| "logps/chosen": [], | |
| "logps/rejected": [], | |
| "val/contain_eos_token": [], | |
| "beta": [], | |
| } | |
| if self.reward_model is not None: | |
| self.stats["objective/rlhf_reward"] = [] | |
| self.stats["objective/scores_margin"] = [] | |
| self.stats["objective/scores"] = [] | |
| if args.use_vllm: | |
| self.llm = model.vllm_engine; self._last_loaded_step = 0; self.generation_config = SamplingParams( | |
| n=2, max_tokens=args.max_new_tokens, | |
| temperature=args.temperature, | |
| top_k=50, | |
| top_p=1.0, | |
| detokenize=False,**getattr(getattr(args, 'vllm_sampling_params', vLLMSamplingParams()), '_set_kwargs', {}),) | |
| else: | |
| self.generation_config = GenerationConfig( | |
| max_new_tokens=args.max_new_tokens, | |
| temperature=args.temperature, | |
| top_k=50, | |
| top_p=1.0, | |
| do_sample=True, | |
| use_cache=False if args.gradient_checkpointing else True, | |
| ) | |
| # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
| # input tensor associated with the key "input_ids". However, in Online DPO, the sampled data does not include | |
| # the "input_ids" key. As a result, the trainer issues the warning: "Could not estimate the number of tokens | |
| # of the input, floating-point operations will not be computed." To suppress this warning, we set the | |
| # "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate | |
| # that the warning has already been issued. | |
| model.warnings_issued["estimate_tokens"] = True | |
| super().__init__( | |
| model=model, | |
| args=args, | |
| data_collator=data_collator, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| processing_class=processing_class, | |
| compute_metrics=compute_metrics, | |
| callbacks=callbacks, | |
| optimizers=optimizers, | |
| preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
| ) | |
| # Add tags for models that have been loaded with the correct transformers version | |
| if hasattr(self.model, "add_model_tags"): | |
| self.model.add_model_tags(self._tag_names) | |
| self._beta = args.beta | |
| # Placed after the super().__init__ because we need self.is_deepspeed_enabled and self.accelerator | |
| if self.is_deepspeed_enabled: | |
| if self.reward_model is not None: | |
| self.reward_model = prepare_deepspeed( | |
| self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16 | |
| ) | |
| if self.ref_model is not None: | |
| self.ref_model = prepare_deepspeed( | |
| self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16 | |
| ) | |
| else: | |
| if self.ref_model is not None: | |
| self.ref_model = self.ref_model.to(self.accelerator.device) | |
| if self.reward_model is not None: | |
| self.reward_model = self.reward_model.to(self.accelerator.device) | |
| def beta(self): | |
| if isinstance(self._beta, list): | |
| epoch = self.state.epoch | |
| return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1] | |
| else: | |
| return self._beta | |
| def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]: | |
| """Tokenize a single row from a DPO specific dataset.""" | |
| if not is_encoder_decoder: | |
| batch = tokenizer(feature["prompt"], add_special_tokens=False) | |
| # Add BOS token to head of prompt. Avoid adding if it's already there | |
| if tokenizer.bos_token_id is not None: | |
| prompt_len_input_ids = len(batch["input_ids"]) | |
| if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]: | |
| batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"] | |
| batch["attention_mask"] = [1] + batch["attention_mask"] | |
| else: | |
| batch = tokenizer(feature["prompt"], add_special_tokens=True) | |
| batch = {f"prompt_{key}": value for key, value in batch.items()} | |
| return batch | |
| # Same as Trainer.get_train_dataloader but skip the "remove_unused_columns". | |
| def get_train_dataloader(self) -> DataLoader: | |
| if self.train_dataset is None: | |
| raise ValueError("Trainer: training requires a train_dataset.") | |
| train_dataset = self.train_dataset | |
| data_collator = self.data_collator | |
| dataloader_params = { | |
| "batch_size": self._train_batch_size, | |
| "collate_fn": data_collator, | |
| "num_workers": self.args.dataloader_num_workers, | |
| "pin_memory": self.args.dataloader_pin_memory, | |
| "persistent_workers": self.args.dataloader_persistent_workers, | |
| } | |
| if not isinstance(train_dataset, torch.utils.data.IterableDataset): | |
| dataloader_params["sampler"] = self._get_train_sampler() | |
| dataloader_params["drop_last"] = self.args.dataloader_drop_last | |
| dataloader_params["worker_init_fn"] = seed_worker | |
| dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor | |
| return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) | |
| # Same as Trainer.get_eval_dataloader but skip the "remove_unused_columns". | |
| def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader: | |
| if eval_dataset is None and self.eval_dataset is None: | |
| raise ValueError("Trainer: evaluation requires an eval_dataset.") | |
| # If we have persistent workers, don't do a fork bomb especially as eval datasets | |
| # don't change during training | |
| dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval" | |
| if ( | |
| hasattr(self, "_eval_dataloaders") | |
| and dataloader_key in self._eval_dataloaders | |
| and self.args.dataloader_persistent_workers | |
| ): | |
| return self.accelerator.prepare(self._eval_dataloaders[dataloader_key]) | |
| eval_dataset = ( | |
| self.eval_dataset[eval_dataset] | |
| if isinstance(eval_dataset, str) | |
| else eval_dataset | |
| if eval_dataset is not None | |
| else self.eval_dataset | |
| ) | |
| data_collator = self.data_collator | |
| dataloader_params = { | |
| "batch_size": self.args.eval_batch_size, | |
| "collate_fn": data_collator, | |
| "num_workers": self.args.dataloader_num_workers, | |
| "pin_memory": self.args.dataloader_pin_memory, | |
| "persistent_workers": self.args.dataloader_persistent_workers, | |
| } | |
| if not isinstance(eval_dataset, torch.utils.data.IterableDataset): | |
| dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset) | |
| dataloader_params["drop_last"] = self.args.dataloader_drop_last | |
| dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor | |
| # accelerator.free_memory() will destroy the references, so | |
| # we need to store the non-prepared version | |
| eval_dataloader = DataLoader(eval_dataset, **dataloader_params) | |
| if self.args.dataloader_persistent_workers: | |
| if hasattr(self, "_eval_dataloaders"): | |
| self._eval_dataloaders[dataloader_key] = eval_dataloader | |
| else: | |
| self._eval_dataloaders = {dataloader_key: eval_dataloader} | |
| return self.accelerator.prepare(eval_dataloader) | |
| def _generate_vllm(self, model, prompts): | |
| eos_token_id = self.processing_class.eos_token_id | |
| pad_token_id = self.processing_class.pad_token_id | |
| # Load the latest weights | |
| pass | |
| pass | |
| if is_conversational({"prompt": prompts[0]}): | |
| outputs = self.llm.chat(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True)) | |
| else: | |
| outputs = self.llm.generate(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True)) | |
| completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs] | |
| prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs] | |
| # Create mask and pad the prompt and completion | |
| max_prompt_length = max(len(ids) for ids in prompt_ids) | |
| prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids] | |
| prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids] | |
| max_tokens = self.generation_config.max_tokens | |
| completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids] | |
| completion_ids = [ | |
| ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids | |
| for ids in completion_ids | |
| ] | |
| completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids] | |
| # Convert to tensors | |
| prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device) | |
| prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device) | |
| completion_ids = torch.tensor(completion_ids, device=self.accelerator.device) | |
| completion_mask = torch.tensor(completion_mask, device=self.accelerator.device) | |
| return prompt_ids, prompt_mask, completion_ids, completion_mask | |
| def _generate(self, model, prompts): | |
| eos_token_id = self.processing_class.eos_token_id | |
| pad_token_id = self.processing_class.pad_token_id | |
| # Apply chat template and tokenize the input. We do this on-the-fly to enable the use of reward models and | |
| # policies with different tokenizers / chat templates. | |
| inputs = [{"prompt": prompt} for prompt in prompts] | |
| inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] | |
| inputs = [self.tokenize_row(x, model.config.is_encoder_decoder, self.processing_class) for x in inputs] | |
| inputs = self.data_collator(inputs) | |
| # Sample 2 completions per prompt of size `max_new_tokens` from the model | |
| inputs = self._prepare_inputs(inputs) | |
| prompt_ids = inputs["prompt_input_ids"].repeat(2, 1) | |
| prompt_mask = inputs["prompt_attention_mask"].repeat(2, 1) | |
| with unwrap_model_for_generation( | |
| model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation | |
| ) as unwrapped_model: | |
| output = unwrapped_model.generate( | |
| input_ids=prompt_ids, | |
| attention_mask=prompt_mask, | |
| generation_config=self.generation_config, | |
| ) | |
| completion_ids = output[:, prompt_ids.size(1) :] | |
| completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id) | |
| return prompt_ids, prompt_mask, completion_ids, completion_mask | |
| def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask): | |
| # Get the number of tokens to truncate from prompt | |
| num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0) | |
| # Truncate left to avoid oom | |
| prompt_ids = prompt_ids[:, num_tokens_to_truncate:] | |
| prompt_mask = prompt_mask[:, num_tokens_to_truncate:] | |
| # Concat the prompt and completion | |
| prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1) | |
| prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1) | |
| # Get the logprobs of the completions from the model | |
| output = model(prompt_completion_ids, attention_mask=prompt_completion_mask) | |
| # There is 1 offset, because the model predict the next token | |
| logits = output.logits[:, prompt_ids.size(1) - 1 : -1] | |
| # Take the completion tokens logprob | |
| logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1) | |
| return logprobs | |
| def training_step( | |
| self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None | |
| ) -> torch.Tensor: | |
| model.train() | |
| prompts = inputs["prompt"] | |
| batch_size = len(prompts) | |
| if self.args.use_vllm: | |
| prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(model, prompts) | |
| else: | |
| prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts) | |
| contain_eos_token = torch.any(completion_ids == self.processing_class.eos_token_id, dim=-1) | |
| logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask) | |
| with torch.no_grad(): | |
| if self.ref_model is not None: | |
| ref_logprobs = self._forward(self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask) | |
| else: # peft case: we just need to disable the adapter | |
| with self.model.disable_adapter(): | |
| ref_logprobs = self._forward(self.model, prompt_ids, prompt_mask, completion_ids, completion_mask) | |
| # Decode the completions, and format them if the input is conversational | |
| device = logprobs.device | |
| completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) | |
| if is_conversational({"prompt": prompts[0]}): | |
| completions = [[{"role": "assistant", "content": completion}] for completion in completions] | |
| # Get the reward from the reward model or judge | |
| if self.judge is not None: | |
| # Once formatted, conversational data may contain special tokens (such as <|im_start|>) that are not | |
| # directly understandable by the judge and could alter its judgment. To avoid this and make the judge | |
| # independent of the model's chat template, we use the raw conversation data, and apply our own chat | |
| # template to it. | |
| if is_conversational({"prompt": prompts[0]}): | |
| environment = jinja2.Environment() | |
| template = environment.from_string(SIMPLE_CHAT_TEMPLATE) | |
| prompts = [template.render(messages=prompt) for prompt in prompts] | |
| completions = [template.render(messages=completion) for completion in completions] | |
| ranks_of_first_completion = self.judge.judge( | |
| prompts, list(zip(completions[:batch_size], completions[batch_size:])) | |
| ) | |
| # convert ranks to a True/False mask: | |
| # when rank == 0, it means the first completion is the best | |
| # when rank == 1, it means the second completion is the best | |
| mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device) | |
| else: | |
| # The reward model may not have the same chat template or tokenizer as the model, so we need to use the | |
| # raw data (string), apply the chat template (if needed), and tokenize it with the reward processing class. | |
| prompts = 2 * prompts # repeat the prompt: [prompt0, prompt1] -> [prompt0, prompt1, prompt0, prompt1] | |
| if is_conversational({"prompt": prompts[0]}): | |
| examples = [{"prompt": p, "completion": c} for p, c in zip(prompts, completions)] | |
| examples = [apply_chat_template(example, self.reward_processing_class) for example in examples] | |
| prompts = [example["prompt"] for example in examples] | |
| completions = [example["completion"] for example in examples] | |
| # Tokenize the prompts | |
| prompts_ids = self.reward_processing_class( | |
| prompts, padding=True, return_tensors="pt", padding_side="left" | |
| )["input_ids"].to(device) | |
| context_length = prompts_ids.shape[1] | |
| # Tokenize the completions | |
| completions_ids = self.reward_processing_class( | |
| completions, padding=True, return_tensors="pt", padding_side="right" | |
| )["input_ids"].to(device) | |
| # Concatenate the prompts and completions and get the reward | |
| prompt_completion_ids = torch.cat((prompts_ids, completions_ids), dim=1) | |
| with torch.inference_mode(): | |
| _, scores, _ = get_reward( | |
| self.reward_model, prompt_completion_ids, self.reward_processing_class.pad_token_id, context_length | |
| ) | |
| # Filter completion. Ensure that the sample contains stop_token_id | |
| # Completions not passing that filter will receive a lower score. | |
| if self.args.missing_eos_penalty is not None: | |
| scores[~contain_eos_token] -= self.args.missing_eos_penalty | |
| # Split the scores in 2 (the prompts of the first half are the same as the second half) | |
| first_half, second_half = scores.split(batch_size) | |
| # Get the indices of the chosen and rejected examples | |
| mask = first_half >= second_half | |
| batch_range = torch.arange(batch_size, device=device) | |
| chosen_indices = batch_range + (~mask * batch_size) | |
| rejected_indices = batch_range + (mask * batch_size) | |
| # Build tensor so that the first half is the chosen examples and the second half the rejected examples | |
| cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0) # cr = chosen and rejected | |
| cr_logprobs = logprobs[cr_indices] | |
| cr_ref_logprobs = ref_logprobs[cr_indices] | |
| # mask out the padding tokens | |
| padding_mask = ~completion_mask.bool() | |
| cr_padding_mask = padding_mask[cr_indices] | |
| cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1) | |
| cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1) | |
| # Split the chosen and rejected examples | |
| chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size) | |
| chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size) | |
| pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum | |
| ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum | |
| logits = pi_logratios - ref_logratios | |
| if self.args.loss_type == "sigmoid": | |
| losses = -F.logsigmoid(self.beta * logits) | |
| elif self.args.loss_type == "ipo": | |
| losses = (logits - 1 / (2 * self.beta)) ** 2 | |
| else: | |
| raise NotImplementedError(f"invalid loss type {self.loss_type}") | |
| loss = losses.mean() | |
| # Log everything | |
| if self.reward_model is not None: | |
| scores_margin = scores[chosen_indices] - scores[rejected_indices] | |
| self.stats["objective/scores_margin"].append( | |
| self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item() | |
| ) | |
| self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(scores.mean()).mean().item()) | |
| self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item()) | |
| self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item()) | |
| self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item()) | |
| kl = logprobs - ref_logprobs | |
| mean_kl = kl.sum(1).mean() | |
| self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item()) | |
| non_score_reward = (-self.beta * kl).sum(1) | |
| mean_non_score_reward = non_score_reward.mean() | |
| self.stats["objective/non_score_reward"].append( | |
| self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() | |
| ) | |
| if self.reward_model is not None: | |
| rlhf_reward = scores + non_score_reward | |
| self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item()) | |
| mean_entropy = -logprobs.sum(1).mean() | |
| self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item()) | |
| chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum) | |
| gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards) | |
| self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item()) | |
| rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum) | |
| gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards) | |
| self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item()) | |
| margin = gathered_chosen_rewards - gathered_rejected_rewards | |
| self.stats["rewards/margins"].append(margin.mean().item()) | |
| accuracy = margin > 0 | |
| self.stats["rewards/accuracies"].append(accuracy.float().mean().item()) | |
| self.stats["beta"].append(self.beta) | |
| if ( | |
| self.args.torch_empty_cache_steps is not None | |
| and self.state.global_step % self.args.torch_empty_cache_steps == 0 | |
| ): | |
| empty_cache() | |
| kwargs = {} | |
| # For LOMO optimizers you need to explicitly use the learnign rate | |
| if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: | |
| kwargs["learning_rate"] = self._get_learning_rate() | |
| if self.args.n_gpu > 1: | |
| loss = loss.mean() # mean() to average on multi-gpu parallel training | |
| if self.use_apex: | |
| with amp.scale_loss(loss, self.optimizer) as scaled_loss: | |
| scaled_loss.backward() | |
| else: | |
| self.accelerator.backward(loss, **kwargs) | |
| return loss.detach() / self.args.gradient_accumulation_steps | |
| # Same as Trainer._maybe_log_save_evaluate but log our metrics | |
| # start_time defaults to None to allow compatibility with transformers<=4.46 | |
| def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time=None): | |
| if self.control.should_log and self.state.global_step > self._globalstep_last_logged: | |
| logs: dict[str, float] = {} | |
| # all_gather + mean() to get average loss over all processes | |
| tr_loss_scalar = self._nested_gather(tr_loss).mean().item() | |
| # reset tr_loss to zero | |
| tr_loss -= tr_loss | |
| logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) | |
| if grad_norm is not None: | |
| logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm | |
| logs["learning_rate"] = self._get_learning_rate() | |
| # Add our metrics | |
| for key, val in self.stats.items(): | |
| logs[key] = sum(val) / len(val) | |
| self.stats = {key: [] for key in self.stats} # reset stats | |
| self._total_loss_scalar += tr_loss_scalar | |
| self._globalstep_last_logged = self.state.global_step | |
| self.store_flos() | |
| if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): | |
| self.log(logs, start_time) | |
| else: # transformers<=4.46 | |
| self.log(logs) | |
| metrics = None | |
| if self.control.should_evaluate: | |
| metrics = self._evaluate(trial, ignore_keys_for_eval) | |
| is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial) | |
| if self.args.save_strategy == "best": | |
| self.control.should_save = is_new_best_metric | |
| if self.control.should_save: | |
| self._save_checkpoint(model, trial) | |
| self.control = self.callback_handler.on_save(self.args, self.state, self.control) | |
| # Copy-pasted from transformers.Trainer to maintain compatibility with earlier versions. | |
| # This can be removed once the minimum transformers version is updated to 4.47. | |
| # Refer to https://github.com/huggingface/trl/pull/2288 for more details. | |
| def _determine_best_metric(self, metrics, trial): | |
| """ | |
| Determine if the model should be saved based on the evaluation metrics. | |
| If args.metric_for_best_model is not set, the loss is used. | |
| Returns: | |
| bool: True if a new best metric was found, else False | |
| """ | |
| is_new_best_metric = False | |
| if self.args.metric_for_best_model is not None: | |
| metric_to_check = self.args.metric_for_best_model | |
| if not metric_to_check.startswith("eval_"): | |
| metric_to_check = f"eval_{metric_to_check}" | |
| try: | |
| metric_value = metrics[metric_to_check] | |
| except KeyError as exc: | |
| raise KeyError( | |
| f"The `metric_for_best_model` training argument is set to '{metric_to_check}', which is not found in the evaluation metrics. " | |
| f"The available evaluation metrics are: {list(metrics.keys())}. Consider changing the `metric_for_best_model` via the TrainingArguments." | |
| ) from exc | |
| operator = np.greater if self.args.greater_is_better else np.less | |
| if self.state.best_metric is None: | |
| self.state.best_metric = float("-inf") if self.args.greater_is_better else float("inf") | |
| if operator(metric_value, self.state.best_metric): | |
| run_dir = self._get_output_dir(trial=trial) | |
| checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" | |
| output_dir = os.path.join(run_dir, checkpoint_folder) | |
| self.state.best_metric = metric_value | |
| self.state.best_model_checkpoint = output_dir | |
| is_new_best_metric = True | |
| return is_new_best_metric | |
| def create_model_card( | |
| self, | |
| model_name: Optional[str] = None, | |
| dataset_name: Optional[str] = None, | |
| tags: Union[str, list[str], None] = None, | |
| ): | |
| """ | |
| Creates a draft of a model card using the information available to the `Trainer`. | |
| Args: | |
| model_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the model. | |
| dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the dataset used for training. | |
| tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
| Tags to be associated with the model card. | |
| """ | |
| if not self.is_world_process_zero(): | |
| return | |
| if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
| base_model = self.model.config._name_or_path | |
| else: | |
| base_model = None | |
| tags = tags or [] | |
| if isinstance(tags, str): | |
| tags = [tags] | |
| if hasattr(self.model.config, "unsloth_version"): | |
| tags.append("unsloth") | |
| citation = textwrap.dedent("""\ | |
| @article{guo2024direct, | |
| title = {{Direct Language Model Alignment from Online AI Feedback}}, | |
| author = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel}, | |
| year = 2024, | |
| eprint = {arXiv:2402.04792} | |
| }""") | |
| model_card = generate_model_card( | |
| base_model=base_model, | |
| model_name=model_name, | |
| hub_model_id=self.hub_model_id, | |
| dataset_name=dataset_name, | |
| tags=tags, | |
| wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
| comet_url=get_comet_experiment_url(), | |
| trainer_name="Online DPO", | |
| trainer_citation=citation, | |
| paper_title="Direct Language Model Alignment from Online AI Feedback", | |
| paper_id="2402.04792", | |
| ) | |
| model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
| class UnslothOnlineDPOTrainer(_UnslothOnlineDPOTrainer): | |
| """ | |
| Initialize OnlineDPOTrainer. | |
| Args: | |
| model (`transformers.PreTrainedModel` or `torch.nn.Module`): | |
| The model to train, preferably an `AutoModelForCausalLM`. | |
| ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`): | |
| The reference model to use for training. If None is specified, the reference model will be created from | |
| the model. | |
| reward_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`): | |
| The reward model to score completions with, preferably an `AutoModelForSequenceClassification`. | |
| judge (`BasePairwiseJudge`): | |
| The judge to use for pairwise comparison of model completions. | |
| args (`OnlineDPOConfig`): | |
| The online DPO config arguments to use for training. | |
| data_collator (`transformers.DataCollator`): | |
| The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used | |
| which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
| train_dataset (`datasets.Dataset`): | |
| The dataset to use for training. | |
| eval_dataset (`datasets.Dataset`): | |
| The dataset to use for evaluation. | |
| processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
| Processing class used to process the data. If provided, will be used to automatically process the inputs | |
| for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
| reuse the fine-tuned model. | |
| peft_config (`dict`): | |
| The peft config to use for training. | |
| compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
| The function to use to compute the metrics. Must take a `EvalPrediction` and return | |
| a dictionary string to metric values. | |
| callbacks (`list[transformers.TrainerCallback]`): | |
| The callbacks to use for training. | |
| optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
| The optimizer and scheduler to use for training. | |
| preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
| The function to use to preprocess the logits before computing the metrics. | |
| """ | |
| def __init__( | |
| self, | |
| model, | |
| ref_model = None, | |
| reward_model = None, | |
| judge = None, | |
| args = None, | |
| data_collator = None, | |
| train_dataset = None, | |
| eval_dataset = None, | |
| processing_class = None, | |
| reward_processing_class = None, | |
| peft_config = None, | |
| compute_metrics = None, | |
| callbacks = None, | |
| preprocess_logits_for_metrics = None, | |
| **kwargs | |
| ): | |
| if args is None: args = UnslothOnlineDPOConfig() | |
| use_bf16 = getattr(args, 'bf16', False) | |
| use_fp16 = getattr(args, 'fp16', False) | |
| force_float32 = False | |
| if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
| print('Unsloth: Switching to float32 training since model cannot work with float16') | |
| force_float32 = True | |
| mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
| dtype = getattr(model.config, 'torch_dtype', None) | |
| if dtype is None: dtype = model.get_input_embeddings().dtype | |
| from unsloth_zoo.utils import _get_dtype | |
| dtype = _get_dtype(dtype) | |
| float16 = dtype == torch.float16 | |
| if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
| if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
| if force_float32: | |
| args.fp16 = False | |
| args.bf16 = False | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
| elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
| args.fp16 = float16 | |
| args.bf16 = not float16 | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
| if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
| args.eval_strategy = 'steps' | |
| if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
| ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
| if ga_steps is not None and ga_steps > 1: | |
| from transformers import __version__ as transformers_version | |
| if Version(transformers_version) <= Version('4.45.2'): | |
| print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
| '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
| if getattr(args, 'eval_strategy', 'no') != 'no': | |
| eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
| if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
| if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
| fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
| bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
| if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
| if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
| if force_float32: | |
| args.bf16_full_eval = False | |
| args.fp16_full_eval = False | |
| elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
| args.bf16_full_eval = True | |
| args.fp16_full_eval = False | |
| elif not bf16_full_eval and not fp16_full_eval: | |
| args.bf16_full_eval = args.bf16 | |
| args.fp16_full_eval = args.fp16 | |
| _output_logits = False | |
| if locals().get('compute_metrics', None) is not None: _output_logits = True | |
| if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
| if _output_logits: | |
| os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
| if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
| pass | |
| else: | |
| model_max_seq_length = getattr(model, 'max_seq_length', None) | |
| args_max_seq_length = getattr(args, 'max_seq_length', None) | |
| if args_max_seq_length is None and model_max_seq_length is not None: | |
| max_seq_length = model.max_seq_length | |
| if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
| if model is not None and hasattr(model, 'for_training'): | |
| model.for_training() | |
| if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
| if 'processing_class' in locals(): | |
| if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
| if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
| __tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
| from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) | |
| elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer) | |
| else: | |
| if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
| if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
| if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq): | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) | |
| else: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) | |
| other_metrics = [] | |
| from unsloth_zoo.logging_utils import PatchRLStatistics | |
| PatchRLStatistics('online_dpo_trainer', other_metrics) | |
| super().__init__( | |
| model = model, | |
| ref_model = ref_model, | |
| reward_model = reward_model, | |
| judge = judge, | |
| args = args, | |
| data_collator = data_collator, | |
| train_dataset = train_dataset, | |
| eval_dataset = eval_dataset, | |
| processing_class = processing_class, | |
| reward_processing_class = reward_processing_class, | |
| peft_config = peft_config, | |
| compute_metrics = compute_metrics, | |
| callbacks = callbacks, | |
| preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs) | |
| if hasattr(self, 'neftune_hook_handle'): | |
| self.neftune_hook_handle.remove() | |
| if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
| if getattr(args, 'neftune_noise_alpha', None) is not None: | |
| model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
| pass | |
| pass | |