Create visualizer.py
Browse files- visualizer.py +363 -0
visualizer.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
import imageio
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from matplotlib import cm
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torchvision.transforms as transforms
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
from PIL import Image, ImageDraw
|
17 |
+
|
18 |
+
|
19 |
+
def read_video_from_path(path):
|
20 |
+
try:
|
21 |
+
reader = imageio.get_reader(path)
|
22 |
+
except Exception as e:
|
23 |
+
print("Error opening video file: ", e)
|
24 |
+
return None
|
25 |
+
frames = []
|
26 |
+
for i, im in enumerate(reader):
|
27 |
+
frames.append(np.array(im))
|
28 |
+
return np.stack(frames)
|
29 |
+
|
30 |
+
|
31 |
+
def draw_circle(rgb, coord, radius, color=(255, 0, 0), visible=True, color_alpha=None):
|
32 |
+
# Create a draw object
|
33 |
+
draw = ImageDraw.Draw(rgb)
|
34 |
+
# Calculate the bounding box of the circle
|
35 |
+
left_up_point = (coord[0] - radius, coord[1] - radius)
|
36 |
+
right_down_point = (coord[0] + radius, coord[1] + radius)
|
37 |
+
# Draw the circle
|
38 |
+
color = tuple(list(color) + [color_alpha if color_alpha is not None else 255])
|
39 |
+
|
40 |
+
draw.ellipse(
|
41 |
+
[left_up_point, right_down_point],
|
42 |
+
fill=tuple(color) if visible else None,
|
43 |
+
outline=tuple(color),
|
44 |
+
)
|
45 |
+
return rgb
|
46 |
+
|
47 |
+
|
48 |
+
def draw_line(rgb, coord_y, coord_x, color, linewidth):
|
49 |
+
draw = ImageDraw.Draw(rgb)
|
50 |
+
draw.line(
|
51 |
+
(coord_y[0], coord_y[1], coord_x[0], coord_x[1]),
|
52 |
+
fill=tuple(color),
|
53 |
+
width=linewidth,
|
54 |
+
)
|
55 |
+
return rgb
|
56 |
+
|
57 |
+
|
58 |
+
def add_weighted(rgb, alpha, original, beta, gamma):
|
59 |
+
return (rgb * alpha + original * beta + gamma).astype("uint8")
|
60 |
+
|
61 |
+
|
62 |
+
class Visualizer:
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
save_dir: str = "./results",
|
66 |
+
grayscale: bool = False,
|
67 |
+
pad_value: int = 0,
|
68 |
+
fps: int = 10,
|
69 |
+
mode: str = "rainbow", # 'cool', 'optical_flow'
|
70 |
+
linewidth: int = 2,
|
71 |
+
show_first_frame: int = 10,
|
72 |
+
tracks_leave_trace: int = 0, # -1 for infinite
|
73 |
+
):
|
74 |
+
self.mode = mode
|
75 |
+
self.save_dir = save_dir
|
76 |
+
if mode == "rainbow":
|
77 |
+
self.color_map = cm.get_cmap("gist_rainbow")
|
78 |
+
elif mode == "cool":
|
79 |
+
self.color_map = cm.get_cmap(mode)
|
80 |
+
self.show_first_frame = show_first_frame
|
81 |
+
self.grayscale = grayscale
|
82 |
+
self.tracks_leave_trace = tracks_leave_trace
|
83 |
+
self.pad_value = pad_value
|
84 |
+
self.linewidth = linewidth
|
85 |
+
self.fps = fps
|
86 |
+
|
87 |
+
def visualize(
|
88 |
+
self,
|
89 |
+
video: torch.Tensor, # (B,T,C,H,W)
|
90 |
+
tracks: torch.Tensor, # (B,T,N,2)
|
91 |
+
visibility: torch.Tensor = None, # (B, T, N, 1) bool
|
92 |
+
gt_tracks: torch.Tensor = None, # (B,T,N,2)
|
93 |
+
segm_mask: torch.Tensor = None, # (B,1,H,W)
|
94 |
+
filename: str = "video",
|
95 |
+
writer=None, # tensorboard Summary Writer, used for visualization during training
|
96 |
+
step: int = 0,
|
97 |
+
query_frame=0,
|
98 |
+
save_video: bool = True,
|
99 |
+
compensate_for_camera_motion: bool = False,
|
100 |
+
opacity: float = 1.0,
|
101 |
+
):
|
102 |
+
if compensate_for_camera_motion:
|
103 |
+
assert segm_mask is not None
|
104 |
+
if segm_mask is not None:
|
105 |
+
coords = tracks[0, query_frame].round().long()
|
106 |
+
segm_mask = segm_mask[0, query_frame][coords[:, 1], coords[:, 0]].long()
|
107 |
+
|
108 |
+
video = F.pad(
|
109 |
+
video,
|
110 |
+
(self.pad_value, self.pad_value, self.pad_value, self.pad_value),
|
111 |
+
"constant",
|
112 |
+
255,
|
113 |
+
)
|
114 |
+
color_alpha = int(opacity * 255)
|
115 |
+
tracks = tracks + self.pad_value
|
116 |
+
|
117 |
+
if self.grayscale:
|
118 |
+
transform = transforms.Grayscale()
|
119 |
+
video = transform(video)
|
120 |
+
video = video.repeat(1, 1, 3, 1, 1)
|
121 |
+
|
122 |
+
res_video = self.draw_tracks_on_video(
|
123 |
+
video=video,
|
124 |
+
tracks=tracks,
|
125 |
+
visibility=visibility,
|
126 |
+
segm_mask=segm_mask,
|
127 |
+
gt_tracks=gt_tracks,
|
128 |
+
query_frame=query_frame,
|
129 |
+
compensate_for_camera_motion=compensate_for_camera_motion,
|
130 |
+
color_alpha=color_alpha,
|
131 |
+
)
|
132 |
+
if save_video:
|
133 |
+
self.save_video(res_video, filename=filename, writer=writer, step=step)
|
134 |
+
return res_video
|
135 |
+
|
136 |
+
def save_video(self, video, filename, writer=None, step=0):
|
137 |
+
if writer is not None:
|
138 |
+
writer.add_video(
|
139 |
+
filename,
|
140 |
+
video.to(torch.uint8),
|
141 |
+
global_step=step,
|
142 |
+
fps=self.fps,
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
os.makedirs(self.save_dir, exist_ok=True)
|
146 |
+
wide_list = list(video.unbind(1))
|
147 |
+
wide_list = [wide[0].permute(1, 2, 0).cpu().numpy() for wide in wide_list]
|
148 |
+
|
149 |
+
# Prepare the video file path
|
150 |
+
save_path = os.path.join(self.save_dir, f"{filename}.mp4")
|
151 |
+
|
152 |
+
# Create a writer object
|
153 |
+
video_writer = imageio.get_writer(save_path, fps=self.fps)
|
154 |
+
|
155 |
+
# Write frames to the video file
|
156 |
+
for frame in wide_list[2:-1]:
|
157 |
+
video_writer.append_data(frame)
|
158 |
+
|
159 |
+
video_writer.close()
|
160 |
+
|
161 |
+
print(f"Video saved to {save_path}")
|
162 |
+
|
163 |
+
def draw_tracks_on_video(
|
164 |
+
self,
|
165 |
+
video: torch.Tensor,
|
166 |
+
tracks: torch.Tensor,
|
167 |
+
visibility: torch.Tensor = None,
|
168 |
+
segm_mask: torch.Tensor = None,
|
169 |
+
gt_tracks=None,
|
170 |
+
query_frame=0,
|
171 |
+
compensate_for_camera_motion=False,
|
172 |
+
color_alpha: int = 255,
|
173 |
+
):
|
174 |
+
B, T, C, H, W = video.shape
|
175 |
+
_, _, N, D = tracks.shape
|
176 |
+
|
177 |
+
assert D == 2
|
178 |
+
assert C == 3
|
179 |
+
video = video[0].permute(0, 2, 3, 1).byte().detach().cpu().numpy() # S, H, W, C
|
180 |
+
tracks = tracks[0].long().detach().cpu().numpy() # S, N, 2
|
181 |
+
if gt_tracks is not None:
|
182 |
+
gt_tracks = gt_tracks[0].detach().cpu().numpy()
|
183 |
+
|
184 |
+
res_video = []
|
185 |
+
|
186 |
+
# process input video
|
187 |
+
for rgb in video:
|
188 |
+
res_video.append(rgb.copy())
|
189 |
+
vector_colors = np.zeros((T, N, 3))
|
190 |
+
|
191 |
+
if self.mode == "optical_flow":
|
192 |
+
import flow_vis
|
193 |
+
|
194 |
+
vector_colors = flow_vis.flow_to_color(tracks - tracks[query_frame][None])
|
195 |
+
elif segm_mask is None:
|
196 |
+
if self.mode == "rainbow":
|
197 |
+
y_min, y_max = (
|
198 |
+
tracks[query_frame, :, 1].min(),
|
199 |
+
tracks[query_frame, :, 1].max(),
|
200 |
+
)
|
201 |
+
norm = plt.Normalize(y_min, y_max)
|
202 |
+
for n in range(N):
|
203 |
+
if isinstance(query_frame, torch.Tensor):
|
204 |
+
query_frame_ = query_frame[n]
|
205 |
+
else:
|
206 |
+
query_frame_ = query_frame
|
207 |
+
color = self.color_map(norm(tracks[query_frame_, n, 1]))
|
208 |
+
color = np.array(color[:3])[None] * 255
|
209 |
+
vector_colors[:, n] = np.repeat(color, T, axis=0)
|
210 |
+
else:
|
211 |
+
# color changes with time
|
212 |
+
for t in range(T):
|
213 |
+
color = np.array(self.color_map(t / T)[:3])[None] * 255
|
214 |
+
vector_colors[t] = np.repeat(color, N, axis=0)
|
215 |
+
else:
|
216 |
+
if self.mode == "rainbow":
|
217 |
+
vector_colors[:, segm_mask <= 0, :] = 255
|
218 |
+
|
219 |
+
y_min, y_max = (
|
220 |
+
tracks[0, segm_mask > 0, 1].min(),
|
221 |
+
tracks[0, segm_mask > 0, 1].max(),
|
222 |
+
)
|
223 |
+
norm = plt.Normalize(y_min, y_max)
|
224 |
+
for n in range(N):
|
225 |
+
if segm_mask[n] > 0:
|
226 |
+
color = self.color_map(norm(tracks[0, n, 1]))
|
227 |
+
color = np.array(color[:3])[None] * 255
|
228 |
+
vector_colors[:, n] = np.repeat(color, T, axis=0)
|
229 |
+
|
230 |
+
else:
|
231 |
+
# color changes with segm class
|
232 |
+
segm_mask = segm_mask.cpu()
|
233 |
+
color = np.zeros((segm_mask.shape[0], 3), dtype=np.float32)
|
234 |
+
color[segm_mask > 0] = np.array(self.color_map(1.0)[:3]) * 255.0
|
235 |
+
color[segm_mask <= 0] = np.array(self.color_map(0.0)[:3]) * 255.0
|
236 |
+
vector_colors = np.repeat(color[None], T, axis=0)
|
237 |
+
|
238 |
+
# draw tracks
|
239 |
+
if self.tracks_leave_trace != 0:
|
240 |
+
for t in range(query_frame + 1, T):
|
241 |
+
first_ind = (
|
242 |
+
max(0, t - self.tracks_leave_trace)
|
243 |
+
if self.tracks_leave_trace >= 0
|
244 |
+
else 0
|
245 |
+
)
|
246 |
+
curr_tracks = tracks[first_ind : t + 1]
|
247 |
+
curr_colors = vector_colors[first_ind : t + 1]
|
248 |
+
if compensate_for_camera_motion:
|
249 |
+
diff = (
|
250 |
+
tracks[first_ind : t + 1, segm_mask <= 0]
|
251 |
+
- tracks[t : t + 1, segm_mask <= 0]
|
252 |
+
).mean(1)[:, None]
|
253 |
+
|
254 |
+
curr_tracks = curr_tracks - diff
|
255 |
+
curr_tracks = curr_tracks[:, segm_mask > 0]
|
256 |
+
curr_colors = curr_colors[:, segm_mask > 0]
|
257 |
+
|
258 |
+
res_video[t] = self._draw_pred_tracks(
|
259 |
+
res_video[t],
|
260 |
+
curr_tracks,
|
261 |
+
curr_colors,
|
262 |
+
)
|
263 |
+
if gt_tracks is not None:
|
264 |
+
res_video[t] = self._draw_gt_tracks(
|
265 |
+
res_video[t], gt_tracks[first_ind : t + 1]
|
266 |
+
)
|
267 |
+
|
268 |
+
# draw points
|
269 |
+
for t in range(T):
|
270 |
+
img = Image.fromarray(np.uint8(res_video[t]))
|
271 |
+
for i in range(N):
|
272 |
+
coord = (tracks[t, i, 0], tracks[t, i, 1])
|
273 |
+
visibile = True
|
274 |
+
if visibility is not None:
|
275 |
+
visibile = visibility[0, t, i]
|
276 |
+
if coord[0] != 0 and coord[1] != 0:
|
277 |
+
if not compensate_for_camera_motion or (
|
278 |
+
compensate_for_camera_motion and segm_mask[i] > 0
|
279 |
+
):
|
280 |
+
img = draw_circle(
|
281 |
+
img,
|
282 |
+
coord=coord,
|
283 |
+
radius=int(self.linewidth * 2),
|
284 |
+
color=vector_colors[t, i].astype(int),
|
285 |
+
visible=visibile,
|
286 |
+
color_alpha=color_alpha,
|
287 |
+
)
|
288 |
+
res_video[t] = np.array(img)
|
289 |
+
|
290 |
+
# construct the final rgb sequence
|
291 |
+
if self.show_first_frame > 0:
|
292 |
+
res_video = [res_video[0]] * self.show_first_frame + res_video[1:]
|
293 |
+
return torch.from_numpy(np.stack(res_video)).permute(0, 3, 1, 2)[None].byte()
|
294 |
+
|
295 |
+
def _draw_pred_tracks(
|
296 |
+
self,
|
297 |
+
rgb: np.ndarray, # H x W x 3
|
298 |
+
tracks: np.ndarray, # T x 2
|
299 |
+
vector_colors: np.ndarray,
|
300 |
+
alpha: float = 0.5,
|
301 |
+
):
|
302 |
+
T, N, _ = tracks.shape
|
303 |
+
rgb = Image.fromarray(np.uint8(rgb))
|
304 |
+
for s in range(T - 1):
|
305 |
+
vector_color = vector_colors[s]
|
306 |
+
original = rgb.copy()
|
307 |
+
alpha = (s / T) ** 2
|
308 |
+
for i in range(N):
|
309 |
+
coord_y = (int(tracks[s, i, 0]), int(tracks[s, i, 1]))
|
310 |
+
coord_x = (int(tracks[s + 1, i, 0]), int(tracks[s + 1, i, 1]))
|
311 |
+
if coord_y[0] != 0 and coord_y[1] != 0:
|
312 |
+
rgb = draw_line(
|
313 |
+
rgb,
|
314 |
+
coord_y,
|
315 |
+
coord_x,
|
316 |
+
vector_color[i].astype(int),
|
317 |
+
self.linewidth,
|
318 |
+
)
|
319 |
+
if self.tracks_leave_trace > 0:
|
320 |
+
rgb = Image.fromarray(
|
321 |
+
np.uint8(
|
322 |
+
add_weighted(
|
323 |
+
np.array(rgb), alpha, np.array(original), 1 - alpha, 0
|
324 |
+
)
|
325 |
+
)
|
326 |
+
)
|
327 |
+
rgb = np.array(rgb)
|
328 |
+
return rgb
|
329 |
+
|
330 |
+
def _draw_gt_tracks(
|
331 |
+
self,
|
332 |
+
rgb: np.ndarray, # H x W x 3,
|
333 |
+
gt_tracks: np.ndarray, # T x 2
|
334 |
+
):
|
335 |
+
T, N, _ = gt_tracks.shape
|
336 |
+
color = np.array((211, 0, 0))
|
337 |
+
rgb = Image.fromarray(np.uint8(rgb))
|
338 |
+
for t in range(T):
|
339 |
+
for i in range(N):
|
340 |
+
gt_tracks = gt_tracks[t][i]
|
341 |
+
# draw a red cross
|
342 |
+
if gt_tracks[0] > 0 and gt_tracks[1] > 0:
|
343 |
+
length = self.linewidth * 3
|
344 |
+
coord_y = (int(gt_tracks[0]) + length, int(gt_tracks[1]) + length)
|
345 |
+
coord_x = (int(gt_tracks[0]) - length, int(gt_tracks[1]) - length)
|
346 |
+
rgb = draw_line(
|
347 |
+
rgb,
|
348 |
+
coord_y,
|
349 |
+
coord_x,
|
350 |
+
color,
|
351 |
+
self.linewidth,
|
352 |
+
)
|
353 |
+
coord_y = (int(gt_tracks[0]) - length, int(gt_tracks[1]) + length)
|
354 |
+
coord_x = (int(gt_tracks[0]) + length, int(gt_tracks[1]) - length)
|
355 |
+
rgb = draw_line(
|
356 |
+
rgb,
|
357 |
+
coord_y,
|
358 |
+
coord_x,
|
359 |
+
color,
|
360 |
+
self.linewidth,
|
361 |
+
)
|
362 |
+
rgb = np.array(rgb)
|
363 |
+
return rgb
|