nikkar commited on
Commit
31e843b
·
verified ·
1 Parent(s): 27f3688

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -371,11 +371,11 @@ def track(
371
 
372
  else:
373
  queries = query_points_tensor
374
- xy = get_points_on_a_grid(15, video_input.shape[3:], device=device)
375
- queries__ = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) #
376
  num_tracks = queries.shape[1]
377
- queries = torch.cat([queries,queries__],dim=1)
378
- add_support_grid=True
379
 
380
  model(video_chunk=video_input, is_first_step=True, grid_size=0, queries=queries, add_support_grid=add_support_grid)
381
  #
@@ -387,7 +387,7 @@ def track(
387
  add_support_grid=add_support_grid
388
  ) # B T N 2, B T N 1
389
  tracks = (pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device))[0].permute(1, 0, 2).cpu().numpy()
390
- pred_occ = pred_visibility[0].permute(1, 0).cpu().numpy()
391
 
392
  # make color array
393
  colors = []
@@ -395,16 +395,16 @@ def track(
395
  colors.extend(frame_colors)
396
  colors = np.array(colors)
397
 
398
- pred_tracks = (pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device))
399
 
400
- vis = Visualizer(save_dir="./saved_videos", pad_value=0, linewidth=1, tracks_leave_trace=0)
401
  # segm_mask = torch.zeros(queries.shape[1])
402
  # segm_mask[:num_tracks] = 1
403
  # print('segm_mask',segm_mask.shape, segm_mask)
404
  # segm_mask=segm_mask,
405
- painted_video = vis.visualize(torch.tensor(video_preview).permute(0, 3, 1, 2)[None].to(pred_tracks.device), pred_tracks, pred_visibility, save_video=False)[0].permute(0, 2, 3, 1).cpu().numpy()
406
 
407
- # painted_video = paint_point_track(video_preview,tracks,pred_occ,colors)
408
 
409
  # save video
410
  video_file_name = uuid.uuid4().hex + ".mp4"
 
371
 
372
  else:
373
  queries = query_points_tensor
374
+ # xy = get_points_on_a_grid(15, video_input.shape[3:], device=device)
375
+ # queries__ = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) #
376
  num_tracks = queries.shape[1]
377
+ # queries = torch.cat([queries,queries__],dim=1)
378
+ # add_support_grid=True
379
 
380
  model(video_chunk=video_input, is_first_step=True, grid_size=0, queries=queries, add_support_grid=add_support_grid)
381
  #
 
387
  add_support_grid=add_support_grid
388
  ) # B T N 2, B T N 1
389
  tracks = (pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device))[0].permute(1, 0, 2).cpu().numpy()
390
+ pred_occ = torch.ones_like(pred_visibility[0]).permute(1, 0).cpu().numpy()
391
 
392
  # make color array
393
  colors = []
 
395
  colors.extend(frame_colors)
396
  colors = np.array(colors)
397
 
398
+ # pred_tracks = (pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device))
399
 
400
+ # vis = Visualizer(save_dir="./saved_videos", pad_value=0, linewidth=1, tracks_leave_trace=0)
401
  # segm_mask = torch.zeros(queries.shape[1])
402
  # segm_mask[:num_tracks] = 1
403
  # print('segm_mask',segm_mask.shape, segm_mask)
404
  # segm_mask=segm_mask,
405
+ # painted_video = vis.visualize(torch.tensor(video_preview).permute(0, 3, 1, 2)[None].to(pred_tracks.device), pred_tracks, pred_visibility, save_video=False)[0].permute(0, 2, 3, 1).cpu().numpy()
406
 
407
+ painted_video = paint_point_track(video_preview,tracks,pred_occ,colors)
408
 
409
  # save video
410
  video_file_name = uuid.uuid4().hex + ".mp4"