reviews-demo / app.py
nhull's picture
Save unicorn!
e9c92f6 verified
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from PIL import Image
from huggingface_hub import hf_hub_download
unicorn_image_path = "unicorn.png"
import gradio as gr
from transformers import (
DistilBertTokenizerFast,
DistilBertForSequenceClassification,
AutoTokenizer,
AutoModelForSequenceClassification,
)
from huggingface_hub import hf_hub_download
import torch
import pickle
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import re
gru_repo_id = "arjahojnik/GRU-sentiment-model"
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
gru_model = load_model(gru_model_path)
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
with open(gru_tokenizer_path, "rb") as f:
gru_tokenizer = pickle.load(f)
lstm_repo_id = "arjahojnik/LSTM-sentiment-model"
lstm_model_path = hf_hub_download(repo_id=lstm_repo_id, filename="LSTM_model.h5")
lstm_model = load_model(lstm_model_path)
lstm_tokenizer_path = hf_hub_download(repo_id=lstm_repo_id, filename="my_tokenizer.pkl")
with open(lstm_tokenizer_path, "rb") as f:
lstm_tokenizer = pickle.load(f)
bilstm_repo_id = "arjahojnik/BiLSTM-sentiment-model"
bilstm_model_path = hf_hub_download(repo_id=bilstm_repo_id, filename="BiLSTM_model.h5")
bilstm_model = load_model(bilstm_model_path)
bilstm_tokenizer_path = hf_hub_download(repo_id=bilstm_repo_id, filename="my_tokenizer.pkl")
with open(bilstm_tokenizer_path, "rb") as f:
bilstm_tokenizer = pickle.load(f)
def preprocess_text(text):
text = text.lower()
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
return text
def predict_with_gru(text):
cleaned = preprocess_text(text)
seq = gru_tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = gru_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
def predict_with_lstm(text):
cleaned = preprocess_text(text)
seq = lstm_tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = lstm_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
def predict_with_bilstm(text):
cleaned = preprocess_text(text)
seq = bilstm_tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = bilstm_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
models = {
"DistilBERT": {
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
"model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"),
},
"Logistic Regression": {},
"BERT Multilingual (NLP Town)": {
"tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
"model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
},
"TinyBERT": {
"tokenizer": AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model"),
"model": AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model"),
},
"RoBERTa": {
"tokenizer": AutoTokenizer.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
"model": AutoModelForSequenceClassification.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
}
}
logistic_regression_repo = "nhull/logistic-regression-model"
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
with open(log_reg_model_path, "rb") as model_file:
log_reg_model = pickle.load(model_file)
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
with open(vectorizer_path, "rb") as vectorizer_file:
vectorizer = pickle.load(vectorizer_file)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for model_data in models.values():
if "model" in model_data:
model_data["model"].to(device)
def predict_with_distilbert(text):
tokenizer = models["DistilBERT"]["tokenizer"]
model = models["DistilBERT"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
def predict_with_logistic_regression(text):
transformed_text = vectorizer.transform([text])
predictions = log_reg_model.predict(transformed_text)
return int(predictions[0])
def predict_with_bert_multilingual(text):
tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"]
model = models["BERT Multilingual (NLP Town)"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
def predict_with_tinybert(text):
tokenizer = models["TinyBERT"]["tokenizer"]
model = models["TinyBERT"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
def predict_with_roberta_ordek899(text):
tokenizer = models["RoBERTa"]["tokenizer"]
model = models["RoBERTa"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
def analyze_sentiment_and_statistics(text):
results = {
"Logistic Regression": predict_with_logistic_regression(text),
"GRU Model": predict_with_gru(text),
"LSTM Model": predict_with_lstm(text),
"BiLSTM Model": predict_with_bilstm(text),
"DistilBERT": predict_with_distilbert(text),
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
"TinyBERT": predict_with_tinybert(text),
"RoBERTa": predict_with_roberta_ordek899(text),
}
scores = list(results.values())
min_score = min(scores)
max_score = max(scores)
min_score_models = [model for model, score in results.items() if score == min_score]
max_score_models = [model for model, score in results.items() if score == max_score]
average_score = np.mean(scores)
if all(score == scores[0] for score in scores):
statistics = {
"Message": "All models predict the same score.",
"Average Score": f"{average_score:.2f}",
}
else:
statistics = {
"Lowest Score": f"{min_score} (Models: {', '.join(min_score_models)})",
"Highest Score": f"{max_score} (Models: {', '.join(max_score_models)})",
"Average Score": f"{average_score:.2f}",
}
return results, statistics
with gr.Blocks(
css="""
.gradio-container {
max-width: 900px;
margin: auto;
padding: 20px;
}
h1 {
text-align: center;
font-size: 2.5rem;
}
.unicorn-image {
display: block;
margin: auto;
width: 300px; /* Larger size */
height: auto;
border-radius: 20px;
margin-bottom: 20px;
animation: magical-float 5s ease-in-out infinite; /* Gentle floating animation */
}
@keyframes magical-float {
0% {
transform: translate(0, 0) rotate(0deg); /* Start position */
}
25% {
transform: translate(10px, -10px) rotate(3deg); /* Slightly up and right, tilted */
}
50% {
transform: translate(0, -20px) rotate(0deg); /* Higher point, back to straight */
}
75% {
transform: translate(-10px, -10px) rotate(-3deg); /* Slightly up and left, tilted */
}
100% {
transform: translate(0, 0) rotate(0deg); /* Return to start position */
}
}
footer {
text-align: center;
margin-top: 20px;
font-size: 14px;
color: gray;
}
.custom-analyze-button {
background-color: #e8a4c9;
color: white;
font-size: 1rem;
padding: 10px 20px;
border-radius: 10px;
border: none;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
transition: transform 0.2s, background-color 0.2s;
}
.custom-analyze-button:hover {
background-color: #d693b8;
transform: scale(1.05);
}
"""
) as demo:
gr.Image(
value=unicorn_image_path,
type="filepath",
elem_classes=["unicorn-image"]
)
gr.Markdown("# Sentiment Analysis Demo")
gr.Markdown(
"""
Welcome! A magical unicorn 🦄 will guide you through this sentiment analysis journey! 🎉
This app lets you explore how different models interpret sentiment and compare their predictions.
**Enjoy the magic!**
"""
)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Enter your text here:",
lines=3,
placeholder="Type your hotel/restaurant review here..."
)
sample_reviews = [
"The hotel was fantastic! Clean rooms and excellent service.",
"The food was horrible, and the staff was rude.",
"Amazing experience overall. Highly recommend!",
"It was okay, not great but not terrible either.",
"Terrible! The room was dirty, and the service was non-existent."
]
sample_dropdown = gr.Dropdown(
choices=["Select an option"] + sample_reviews,
label="Or select a sample review:",
value=None,
interactive=True
)
def update_textbox(selected_sample):
if selected_sample == "Select an option":
return ""
return selected_sample
sample_dropdown.change(
update_textbox,
inputs=[sample_dropdown],
outputs=[text_input]
)
analyze_button = gr.Button("Analyze Sentiment", elem_classes=["custom-analyze-button"])
with gr.Row():
with gr.Column():
gr.Markdown("### Machine Learning")
log_reg_output = gr.Textbox(label="Logistic Regression", interactive=False)
with gr.Column():
gr.Markdown("### Deep Learning")
gru_output = gr.Textbox(label="GRU Model", interactive=False)
lstm_output = gr.Textbox(label="LSTM Model", interactive=False)
bilstm_output = gr.Textbox(label="BiLSTM Model", interactive=False)
with gr.Column():
gr.Markdown("### Transformers")
distilbert_output = gr.Textbox(label="DistilBERT", interactive=False)
bert_output = gr.Textbox(label="BERT Multilingual", interactive=False)
tinybert_output = gr.Textbox(label="TinyBERT", interactive=False)
roberta_output = gr.Textbox(label="RoBERTa", interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("### Feedback")
feedback_output = gr.Textbox(label="Feedback", interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("### Statistics")
stats_output = gr.Textbox(label="Statistics", interactive=False)
gr.Markdown(
"""
<footer>
This demo was built as a part of the NLP course at the University of Zagreb.
Check out our GitHub repository:
<a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank">TripAdvisor Sentiment Analysis</a>
or explore our HuggingFace collection:
<a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank">NLP Zagreb HuggingFace Collection</a>.
</footer>
"""
)
def convert_to_stars(rating):
return "★" * rating + "☆" * (5 - rating)
def process_input_and_analyze(text_input):
if not text_input.strip():
funny_message = "Are you sure you wrote something? Try again! 🧐"
return (
"", "", "", "", "", "", "", "",
funny_message,
"No statistics can be shown."
)
if len(text_input.strip()) == 1 or text_input.strip().isdigit():
funny_message = "Why not write something that makes sense? 🤔"
return (
"", "", "", "", "", "", "", "",
funny_message,
"No statistics can be shown."
)
if len(text_input.split()) < 5:
results, statistics = analyze_sentiment_and_statistics(text_input)
short_message = "Maybe try with some longer text next time. 😉"
stats_text = (
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\n"
f"Average Score: {statistics['Average Score']}"
if "Message" not in statistics else f"Statistics:\n{statistics['Message']}"
)
return (
convert_to_stars(results['Logistic Regression']),
convert_to_stars(results['GRU Model']),
convert_to_stars(results['LSTM Model']),
convert_to_stars(results['BiLSTM Model']),
convert_to_stars(results['DistilBERT']),
convert_to_stars(results['BERT Multilingual (NLP Town)']),
convert_to_stars(results['TinyBERT']),
convert_to_stars(results['RoBERTa']),
short_message,
stats_text
)
results, statistics = analyze_sentiment_and_statistics(text_input)
feedback_message = "Sentiment analysis completed successfully! 😊"
if "Message" in statistics:
stats_text = f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
else:
stats_text = f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
return (
convert_to_stars(results["Logistic Regression"]),
convert_to_stars(results["GRU Model"]),
convert_to_stars(results["LSTM Model"]),
convert_to_stars(results["BiLSTM Model"]),
convert_to_stars(results["DistilBERT"]),
convert_to_stars(results["BERT Multilingual (NLP Town)"]),
convert_to_stars(results["TinyBERT"]),
convert_to_stars(results["RoBERTa"]),
feedback_message,
stats_text
)
analyze_button.click(
process_input_and_analyze,
inputs=[text_input],
outputs=[
log_reg_output,
gru_output,
lstm_output,
bilstm_output,
distilbert_output,
bert_output,
tinybert_output,
roberta_output,
feedback_output,
stats_output
]
)
demo.launch()